Topological properties of polar food webs
- Autores
- de Santana, Charles N.; Rozenfeld, Alejandro Fabian; Marquet, Pablo A.; Duarte, Carlos M.
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Mean annual temperatures of the Arctic Ocean and Antarctic Peninsula are warming much faster than global mean warming rates, which will likely result in significant biological impacts. Whereas most assessments have been made on individual species, impacts may differ when entire ecosystems are considered, as effects may propagate through ecological interactions such as those in food webs (FWs). The vulnerability of FWs to adverse effects can be estimated from the topology of the networks involved. Here we describe topological characteristics of Arctic and Antarctic marine FWs relevant to their vulnerability to climate change. We analyzed 15 properties of the largest Arctic and Antarctic marine FWs available, and found important topological differences between them. The Arctic FW has greater top to basal and predator to prey species ratios and is more densely connected, with more omnivorous species, than the Antarctic FW. The cumulative degree distribution (CDD; cumulative distribution of the number of links that each species in the food web has) of the Arctic FW follows an exponential decay behavior, whereas that of the Antarctic has a power law cut-off at higher degrees. The differences in the properties analyzed indicate that the Arctic FW has a greater diversity of predators and top species, while the Antarctic has a greater diversity of prey and basal species. The former seems to be more vulnerable to trophic cascade effects resulting from losses of key predator species than the latter. Characteristics of CDDs suggest that the Arctic FW may be more robust against random extinctions of species, although it may be more vulnerable to extinctions affecting the most connected prey species, such as Antarctic krill Euphausia superba, which is the most connected prey species in this trophic network.
Fil: de Santana, Charles N.. Consejo Superior de Investigaciones Cientificas. Instituto Mediterraneo de Estudios Avanzados; España
Fil: Rozenfeld, Alejandro Fabian. Consejo Superior de Investigaciones Cientificas. Instituto Mediterraneo de Estudios Avanzados; España. University of Évora; Portugal. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina
Fil: Marquet, Pablo A.. Pontificia Universidad Católica de Chile; Chile. Consejo Superior de Investigaciones Cientificas. Instituto Mediterraneo de Estudios Avanzados; España. The Santa Fe Institute; Estados Unidos
Fil: Duarte, Carlos M.. Consejo Superior de Investigaciones Cientificas. Instituto Mediterraneo de Estudios Avanzados; España. University of Western Australia; Australia - Materia
-
ANTARCTIC
ARCTIC
COMPLEX NETWORKS
GLOBAL CHANGE
TROPHIC CASCADE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/7024
Ver los metadatos del registro completo
id |
CONICETDig_36f83b336e90678dacc9096013c8ec4c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/7024 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Topological properties of polar food websde Santana, Charles N.Rozenfeld, Alejandro FabianMarquet, Pablo A.Duarte, Carlos M.ANTARCTICARCTICCOMPLEX NETWORKSGLOBAL CHANGETROPHIC CASCADEhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Mean annual temperatures of the Arctic Ocean and Antarctic Peninsula are warming much faster than global mean warming rates, which will likely result in significant biological impacts. Whereas most assessments have been made on individual species, impacts may differ when entire ecosystems are considered, as effects may propagate through ecological interactions such as those in food webs (FWs). The vulnerability of FWs to adverse effects can be estimated from the topology of the networks involved. Here we describe topological characteristics of Arctic and Antarctic marine FWs relevant to their vulnerability to climate change. We analyzed 15 properties of the largest Arctic and Antarctic marine FWs available, and found important topological differences between them. The Arctic FW has greater top to basal and predator to prey species ratios and is more densely connected, with more omnivorous species, than the Antarctic FW. The cumulative degree distribution (CDD; cumulative distribution of the number of links that each species in the food web has) of the Arctic FW follows an exponential decay behavior, whereas that of the Antarctic has a power law cut-off at higher degrees. The differences in the properties analyzed indicate that the Arctic FW has a greater diversity of predators and top species, while the Antarctic has a greater diversity of prey and basal species. The former seems to be more vulnerable to trophic cascade effects resulting from losses of key predator species than the latter. Characteristics of CDDs suggest that the Arctic FW may be more robust against random extinctions of species, although it may be more vulnerable to extinctions affecting the most connected prey species, such as Antarctic krill Euphausia superba, which is the most connected prey species in this trophic network.Fil: de Santana, Charles N.. Consejo Superior de Investigaciones Cientificas. Instituto Mediterraneo de Estudios Avanzados; EspañaFil: Rozenfeld, Alejandro Fabian. Consejo Superior de Investigaciones Cientificas. Instituto Mediterraneo de Estudios Avanzados; España. University of Évora; Portugal. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; ArgentinaFil: Marquet, Pablo A.. Pontificia Universidad Católica de Chile; Chile. Consejo Superior de Investigaciones Cientificas. Instituto Mediterraneo de Estudios Avanzados; España. The Santa Fe Institute; Estados UnidosFil: Duarte, Carlos M.. Consejo Superior de Investigaciones Cientificas. Instituto Mediterraneo de Estudios Avanzados; España. University of Western Australia; AustraliaInter-Research2013-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/7024de Santana, Charles N.; Rozenfeld, Alejandro Fabian; Marquet, Pablo A.; Duarte, Carlos M.; Topological properties of polar food webs; Inter-Research; Marine Ecology Progress Series; 474; 1-2013; 15-260171-8630enginfo:eu-repo/semantics/altIdentifier/url/http://www.int-res.com/abstracts/meps/v474/p15-26/info:eu-repo/semantics/altIdentifier/doi/10.3354/meps10073info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:36:34Zoai:ri.conicet.gov.ar:11336/7024instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:36:34.584CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Topological properties of polar food webs |
title |
Topological properties of polar food webs |
spellingShingle |
Topological properties of polar food webs de Santana, Charles N. ANTARCTIC ARCTIC COMPLEX NETWORKS GLOBAL CHANGE TROPHIC CASCADE |
title_short |
Topological properties of polar food webs |
title_full |
Topological properties of polar food webs |
title_fullStr |
Topological properties of polar food webs |
title_full_unstemmed |
Topological properties of polar food webs |
title_sort |
Topological properties of polar food webs |
dc.creator.none.fl_str_mv |
de Santana, Charles N. Rozenfeld, Alejandro Fabian Marquet, Pablo A. Duarte, Carlos M. |
author |
de Santana, Charles N. |
author_facet |
de Santana, Charles N. Rozenfeld, Alejandro Fabian Marquet, Pablo A. Duarte, Carlos M. |
author_role |
author |
author2 |
Rozenfeld, Alejandro Fabian Marquet, Pablo A. Duarte, Carlos M. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
ANTARCTIC ARCTIC COMPLEX NETWORKS GLOBAL CHANGE TROPHIC CASCADE |
topic |
ANTARCTIC ARCTIC COMPLEX NETWORKS GLOBAL CHANGE TROPHIC CASCADE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Mean annual temperatures of the Arctic Ocean and Antarctic Peninsula are warming much faster than global mean warming rates, which will likely result in significant biological impacts. Whereas most assessments have been made on individual species, impacts may differ when entire ecosystems are considered, as effects may propagate through ecological interactions such as those in food webs (FWs). The vulnerability of FWs to adverse effects can be estimated from the topology of the networks involved. Here we describe topological characteristics of Arctic and Antarctic marine FWs relevant to their vulnerability to climate change. We analyzed 15 properties of the largest Arctic and Antarctic marine FWs available, and found important topological differences between them. The Arctic FW has greater top to basal and predator to prey species ratios and is more densely connected, with more omnivorous species, than the Antarctic FW. The cumulative degree distribution (CDD; cumulative distribution of the number of links that each species in the food web has) of the Arctic FW follows an exponential decay behavior, whereas that of the Antarctic has a power law cut-off at higher degrees. The differences in the properties analyzed indicate that the Arctic FW has a greater diversity of predators and top species, while the Antarctic has a greater diversity of prey and basal species. The former seems to be more vulnerable to trophic cascade effects resulting from losses of key predator species than the latter. Characteristics of CDDs suggest that the Arctic FW may be more robust against random extinctions of species, although it may be more vulnerable to extinctions affecting the most connected prey species, such as Antarctic krill Euphausia superba, which is the most connected prey species in this trophic network. Fil: de Santana, Charles N.. Consejo Superior de Investigaciones Cientificas. Instituto Mediterraneo de Estudios Avanzados; España Fil: Rozenfeld, Alejandro Fabian. Consejo Superior de Investigaciones Cientificas. Instituto Mediterraneo de Estudios Avanzados; España. University of Évora; Portugal. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina Fil: Marquet, Pablo A.. Pontificia Universidad Católica de Chile; Chile. Consejo Superior de Investigaciones Cientificas. Instituto Mediterraneo de Estudios Avanzados; España. The Santa Fe Institute; Estados Unidos Fil: Duarte, Carlos M.. Consejo Superior de Investigaciones Cientificas. Instituto Mediterraneo de Estudios Avanzados; España. University of Western Australia; Australia |
description |
Mean annual temperatures of the Arctic Ocean and Antarctic Peninsula are warming much faster than global mean warming rates, which will likely result in significant biological impacts. Whereas most assessments have been made on individual species, impacts may differ when entire ecosystems are considered, as effects may propagate through ecological interactions such as those in food webs (FWs). The vulnerability of FWs to adverse effects can be estimated from the topology of the networks involved. Here we describe topological characteristics of Arctic and Antarctic marine FWs relevant to their vulnerability to climate change. We analyzed 15 properties of the largest Arctic and Antarctic marine FWs available, and found important topological differences between them. The Arctic FW has greater top to basal and predator to prey species ratios and is more densely connected, with more omnivorous species, than the Antarctic FW. The cumulative degree distribution (CDD; cumulative distribution of the number of links that each species in the food web has) of the Arctic FW follows an exponential decay behavior, whereas that of the Antarctic has a power law cut-off at higher degrees. The differences in the properties analyzed indicate that the Arctic FW has a greater diversity of predators and top species, while the Antarctic has a greater diversity of prey and basal species. The former seems to be more vulnerable to trophic cascade effects resulting from losses of key predator species than the latter. Characteristics of CDDs suggest that the Arctic FW may be more robust against random extinctions of species, although it may be more vulnerable to extinctions affecting the most connected prey species, such as Antarctic krill Euphausia superba, which is the most connected prey species in this trophic network. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/7024 de Santana, Charles N.; Rozenfeld, Alejandro Fabian; Marquet, Pablo A.; Duarte, Carlos M.; Topological properties of polar food webs; Inter-Research; Marine Ecology Progress Series; 474; 1-2013; 15-26 0171-8630 |
url |
http://hdl.handle.net/11336/7024 |
identifier_str_mv |
de Santana, Charles N.; Rozenfeld, Alejandro Fabian; Marquet, Pablo A.; Duarte, Carlos M.; Topological properties of polar food webs; Inter-Research; Marine Ecology Progress Series; 474; 1-2013; 15-26 0171-8630 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.int-res.com/abstracts/meps/v474/p15-26/ info:eu-repo/semantics/altIdentifier/doi/10.3354/meps10073 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Inter-Research |
publisher.none.fl_str_mv |
Inter-Research |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614386313854976 |
score |
13.070432 |