Random sequential adsorption on Euclidean, fractal, and random lattices
- Autores
- Pasinetti, Pedro Marcelo; Ramírez, Lucía Soledad; Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose; Cwilich, Gabriel
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Irreversible adsorption of objects of different shapes and sizes on Euclidean, fractal, and random lattices is studied. The adsorption process is modeled by using random sequential adsorption algorithm. Objects are adsorbed on one-, two-, and three-dimensional Euclidean lattices, on Sierpinski carpets having dimension d between 1 and 2, and on Erdos-Rényi random graphs. The number of sites is M=Ld for Euclidean and fractal lattices, where L is a characteristic length of the system. In the case of random graphs, such a characteristic length does not exist, and the substrate can be characterized by a fixed set of M vertices (sites) and an average connectivity (or degree) g. This paper concentrates on measuring (i) the probability WL(M)(θ) that a lattice composed of Ld(M) elements reaches a coverage θ and (ii) the exponent νj characterizing the so-called jamming transition. The results obtained for Euclidean, fractal, and random lattices indicate that the quantities derived from the jamming probability WL(M)(θ), such as (dWL/dθ)max and the inverse of the standard deviation ΔL, behave asymptotically as M1/2. In the case of Euclidean and fractal lattices, where L and d can be defined, the asymptotic behavior can be written as M1/2=Ld/2=L1/νj, with νj=2/d.
Fil: Pasinetti, Pedro Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Ramírez, Lucía Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Centres, Paulo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Cwilich, Gabriel. Yeshiva University; Estados Unidos - Materia
-
RANDOM SECUENTIAL ASDORPTION
JAMMING
NETWORKS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/117073
Ver los metadatos del registro completo
id |
CONICETDig_3617b5196cc2f73014b585db9f4b3f41 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/117073 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Random sequential adsorption on Euclidean, fractal, and random latticesPasinetti, Pedro MarceloRamírez, Lucía SoledadCentres, Paulo MarceloRamirez Pastor, Antonio JoseCwilich, GabrielRANDOM SECUENTIAL ASDORPTIONJAMMINGNETWORKShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Irreversible adsorption of objects of different shapes and sizes on Euclidean, fractal, and random lattices is studied. The adsorption process is modeled by using random sequential adsorption algorithm. Objects are adsorbed on one-, two-, and three-dimensional Euclidean lattices, on Sierpinski carpets having dimension d between 1 and 2, and on Erdos-Rényi random graphs. The number of sites is M=Ld for Euclidean and fractal lattices, where L is a characteristic length of the system. In the case of random graphs, such a characteristic length does not exist, and the substrate can be characterized by a fixed set of M vertices (sites) and an average connectivity (or degree) g. This paper concentrates on measuring (i) the probability WL(M)(θ) that a lattice composed of Ld(M) elements reaches a coverage θ and (ii) the exponent νj characterizing the so-called jamming transition. The results obtained for Euclidean, fractal, and random lattices indicate that the quantities derived from the jamming probability WL(M)(θ), such as (dWL/dθ)max and the inverse of the standard deviation ΔL, behave asymptotically as M1/2. In the case of Euclidean and fractal lattices, where L and d can be defined, the asymptotic behavior can be written as M1/2=Ld/2=L1/νj, with νj=2/d.Fil: Pasinetti, Pedro Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Ramírez, Lucía Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Centres, Paulo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Cwilich, Gabriel. Yeshiva University; Estados UnidosAmerican Physical Society2019-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/117073Pasinetti, Pedro Marcelo; Ramírez, Lucía Soledad; Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose; Cwilich, Gabriel; Random sequential adsorption on Euclidean, fractal, and random lattices; American Physical Society; Physical Review E; 100; 5; 11-2019; 1-82470-0053CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevE.100.052114info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.100.052114info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1907.02572info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:10:56Zoai:ri.conicet.gov.ar:11336/117073instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:10:56.397CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Random sequential adsorption on Euclidean, fractal, and random lattices |
title |
Random sequential adsorption on Euclidean, fractal, and random lattices |
spellingShingle |
Random sequential adsorption on Euclidean, fractal, and random lattices Pasinetti, Pedro Marcelo RANDOM SECUENTIAL ASDORPTION JAMMING NETWORKS |
title_short |
Random sequential adsorption on Euclidean, fractal, and random lattices |
title_full |
Random sequential adsorption on Euclidean, fractal, and random lattices |
title_fullStr |
Random sequential adsorption on Euclidean, fractal, and random lattices |
title_full_unstemmed |
Random sequential adsorption on Euclidean, fractal, and random lattices |
title_sort |
Random sequential adsorption on Euclidean, fractal, and random lattices |
dc.creator.none.fl_str_mv |
Pasinetti, Pedro Marcelo Ramírez, Lucía Soledad Centres, Paulo Marcelo Ramirez Pastor, Antonio Jose Cwilich, Gabriel |
author |
Pasinetti, Pedro Marcelo |
author_facet |
Pasinetti, Pedro Marcelo Ramírez, Lucía Soledad Centres, Paulo Marcelo Ramirez Pastor, Antonio Jose Cwilich, Gabriel |
author_role |
author |
author2 |
Ramírez, Lucía Soledad Centres, Paulo Marcelo Ramirez Pastor, Antonio Jose Cwilich, Gabriel |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
RANDOM SECUENTIAL ASDORPTION JAMMING NETWORKS |
topic |
RANDOM SECUENTIAL ASDORPTION JAMMING NETWORKS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Irreversible adsorption of objects of different shapes and sizes on Euclidean, fractal, and random lattices is studied. The adsorption process is modeled by using random sequential adsorption algorithm. Objects are adsorbed on one-, two-, and three-dimensional Euclidean lattices, on Sierpinski carpets having dimension d between 1 and 2, and on Erdos-Rényi random graphs. The number of sites is M=Ld for Euclidean and fractal lattices, where L is a characteristic length of the system. In the case of random graphs, such a characteristic length does not exist, and the substrate can be characterized by a fixed set of M vertices (sites) and an average connectivity (or degree) g. This paper concentrates on measuring (i) the probability WL(M)(θ) that a lattice composed of Ld(M) elements reaches a coverage θ and (ii) the exponent νj characterizing the so-called jamming transition. The results obtained for Euclidean, fractal, and random lattices indicate that the quantities derived from the jamming probability WL(M)(θ), such as (dWL/dθ)max and the inverse of the standard deviation ΔL, behave asymptotically as M1/2. In the case of Euclidean and fractal lattices, where L and d can be defined, the asymptotic behavior can be written as M1/2=Ld/2=L1/νj, with νj=2/d. Fil: Pasinetti, Pedro Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina Fil: Ramírez, Lucía Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina Fil: Centres, Paulo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina Fil: Cwilich, Gabriel. Yeshiva University; Estados Unidos |
description |
Irreversible adsorption of objects of different shapes and sizes on Euclidean, fractal, and random lattices is studied. The adsorption process is modeled by using random sequential adsorption algorithm. Objects are adsorbed on one-, two-, and three-dimensional Euclidean lattices, on Sierpinski carpets having dimension d between 1 and 2, and on Erdos-Rényi random graphs. The number of sites is M=Ld for Euclidean and fractal lattices, where L is a characteristic length of the system. In the case of random graphs, such a characteristic length does not exist, and the substrate can be characterized by a fixed set of M vertices (sites) and an average connectivity (or degree) g. This paper concentrates on measuring (i) the probability WL(M)(θ) that a lattice composed of Ld(M) elements reaches a coverage θ and (ii) the exponent νj characterizing the so-called jamming transition. The results obtained for Euclidean, fractal, and random lattices indicate that the quantities derived from the jamming probability WL(M)(θ), such as (dWL/dθ)max and the inverse of the standard deviation ΔL, behave asymptotically as M1/2. In the case of Euclidean and fractal lattices, where L and d can be defined, the asymptotic behavior can be written as M1/2=Ld/2=L1/νj, with νj=2/d. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/117073 Pasinetti, Pedro Marcelo; Ramírez, Lucía Soledad; Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose; Cwilich, Gabriel; Random sequential adsorption on Euclidean, fractal, and random lattices; American Physical Society; Physical Review E; 100; 5; 11-2019; 1-8 2470-0053 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/117073 |
identifier_str_mv |
Pasinetti, Pedro Marcelo; Ramírez, Lucía Soledad; Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose; Cwilich, Gabriel; Random sequential adsorption on Euclidean, fractal, and random lattices; American Physical Society; Physical Review E; 100; 5; 11-2019; 1-8 2470-0053 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevE.100.052114 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.100.052114 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1907.02572 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614003250167808 |
score |
13.070432 |