QTL mapping of soybean cyst nematode race 9: a generalized linear modeling approach
- Autores
- Arriagada, Osvin; Ferreira, Marcia F. S.; Cervigni, Gerardo Domingo Lucio; Schuster, Ivan; Scapim, Carlos A.; Mora, Freddy
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The Female Index (FI) is a relative measure of host suitability of a soybean line for a particular nematode population and often shows a non-normal distribution. Moreover, most quantitative trait loci (QTL) mapping methods assume that the phenotype follows a normal distribution such as composite interval mapping (CIM). Therefore, a generalized linear modeling (GLM) approach was employed to map QTL for resistance to race 9 of the soybean cyst nematode (SCN) using a total of 83 simple sequence repeat markers (SSR). Two GLM models were tested: model 1, where the FI was treated as a continuous variable, assuming a Gamma distribution with a logarithmic link function; and model 2, where the FI was treated as a categorical trait in a five-item hierarchy, assuming a multinomial distribution with a cumulative logit link function. The FI data of 108 recombinant inbred lines (RIL) confirmed the non-normal distribution for race 9 of the SCN (Shapiro-Wilk?s w=0.86, P<0.0001, skewness=1.52 and kurtosis=2.93). Eight RIL were confirmed to be resistant (FI≤10), and 23 to be highly susceptible (FI≥100). Both GLM models identified one QTL for SCN on the molecular linkage group G, between the markers Satt275 and Satt038 at 48.4 centiMorgans (P=0.017 and 0.033, for models 1 and 2, respectively). Additionally, these results were also compared with the CIM and Bayesian interval mapping (BIM) methods, assuming experimental data with a non-normal response, to determine the robustness and statistical power of these two methods for mapping QTLs. The results make clear that generalized linear modeling approach can be used as an efficient method to map QTLs in a continuous trait with a non-Gaussian distribution. CIM and BIM were robust enough for a reliable mapping of QTLs underlying nonnormally distributed data.
Fil: Arriagada, Osvin. Universidad de Talca; Chile
Fil: Ferreira, Marcia F. S.. Universidade Federal Do Espirito Santo; Brasil
Fil: Cervigni, Gerardo Domingo Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (i); Argentina
Fil: Schuster, Ivan. Central Cooperative for Agricultural Research; Brasil
Fil: Scapim, Carlos A.. Universidade Estadual de Maringá; Brasil
Fil: Mora, Freddy. Universidad de Talca; Chile - Materia
-
Female index
Generalized linear model
Glycine max
Heterodera glycines - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/7843
Ver los metadatos del registro completo
id |
CONICETDig_35f92e63f4ccbeb34a2d25bfcbdf69e2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/7843 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
QTL mapping of soybean cyst nematode race 9: a generalized linear modeling approachArriagada, OsvinFerreira, Marcia F. S.Cervigni, Gerardo Domingo LucioSchuster, IvanScapim, Carlos A.Mora, FreddyFemale indexGeneralized linear modelGlycine maxHeterodera glycineshttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4The Female Index (FI) is a relative measure of host suitability of a soybean line for a particular nematode population and often shows a non-normal distribution. Moreover, most quantitative trait loci (QTL) mapping methods assume that the phenotype follows a normal distribution such as composite interval mapping (CIM). Therefore, a generalized linear modeling (GLM) approach was employed to map QTL for resistance to race 9 of the soybean cyst nematode (SCN) using a total of 83 simple sequence repeat markers (SSR). Two GLM models were tested: model 1, where the FI was treated as a continuous variable, assuming a Gamma distribution with a logarithmic link function; and model 2, where the FI was treated as a categorical trait in a five-item hierarchy, assuming a multinomial distribution with a cumulative logit link function. The FI data of 108 recombinant inbred lines (RIL) confirmed the non-normal distribution for race 9 of the SCN (Shapiro-Wilk?s w=0.86, P<0.0001, skewness=1.52 and kurtosis=2.93). Eight RIL were confirmed to be resistant (FI≤10), and 23 to be highly susceptible (FI≥100). Both GLM models identified one QTL for SCN on the molecular linkage group G, between the markers Satt275 and Satt038 at 48.4 centiMorgans (P=0.017 and 0.033, for models 1 and 2, respectively). Additionally, these results were also compared with the CIM and Bayesian interval mapping (BIM) methods, assuming experimental data with a non-normal response, to determine the robustness and statistical power of these two methods for mapping QTLs. The results make clear that generalized linear modeling approach can be used as an efficient method to map QTLs in a continuous trait with a non-Gaussian distribution. CIM and BIM were robust enough for a reliable mapping of QTLs underlying nonnormally distributed data.Fil: Arriagada, Osvin. Universidad de Talca; ChileFil: Ferreira, Marcia F. S.. Universidade Federal Do Espirito Santo; BrasilFil: Cervigni, Gerardo Domingo Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (i); ArgentinaFil: Schuster, Ivan. Central Cooperative for Agricultural Research; BrasilFil: Scapim, Carlos A.. Universidade Estadual de Maringá; BrasilFil: Mora, Freddy. Universidad de Talca; ChileSouthern Cross Publ2015-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/7843Arriagada, Osvin; Ferreira, Marcia F. S.; Cervigni, Gerardo Domingo Lucio; Schuster, Ivan; Scapim, Carlos A.; et al.; QTL mapping of soybean cyst nematode race 9: a generalized linear modeling approach; Southern Cross Publ; Australian Journal Of Crop Science; 9; 8; 8-2015; 721-7271835-26931835-2707enginfo:eu-repo/semantics/altIdentifier/url/http://www.cropj.com/arriagada_9_8_2015_721_727.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:04:46Zoai:ri.conicet.gov.ar:11336/7843instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:04:46.301CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
QTL mapping of soybean cyst nematode race 9: a generalized linear modeling approach |
title |
QTL mapping of soybean cyst nematode race 9: a generalized linear modeling approach |
spellingShingle |
QTL mapping of soybean cyst nematode race 9: a generalized linear modeling approach Arriagada, Osvin Female index Generalized linear model Glycine max Heterodera glycines |
title_short |
QTL mapping of soybean cyst nematode race 9: a generalized linear modeling approach |
title_full |
QTL mapping of soybean cyst nematode race 9: a generalized linear modeling approach |
title_fullStr |
QTL mapping of soybean cyst nematode race 9: a generalized linear modeling approach |
title_full_unstemmed |
QTL mapping of soybean cyst nematode race 9: a generalized linear modeling approach |
title_sort |
QTL mapping of soybean cyst nematode race 9: a generalized linear modeling approach |
dc.creator.none.fl_str_mv |
Arriagada, Osvin Ferreira, Marcia F. S. Cervigni, Gerardo Domingo Lucio Schuster, Ivan Scapim, Carlos A. Mora, Freddy |
author |
Arriagada, Osvin |
author_facet |
Arriagada, Osvin Ferreira, Marcia F. S. Cervigni, Gerardo Domingo Lucio Schuster, Ivan Scapim, Carlos A. Mora, Freddy |
author_role |
author |
author2 |
Ferreira, Marcia F. S. Cervigni, Gerardo Domingo Lucio Schuster, Ivan Scapim, Carlos A. Mora, Freddy |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Female index Generalized linear model Glycine max Heterodera glycines |
topic |
Female index Generalized linear model Glycine max Heterodera glycines |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.1 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
The Female Index (FI) is a relative measure of host suitability of a soybean line for a particular nematode population and often shows a non-normal distribution. Moreover, most quantitative trait loci (QTL) mapping methods assume that the phenotype follows a normal distribution such as composite interval mapping (CIM). Therefore, a generalized linear modeling (GLM) approach was employed to map QTL for resistance to race 9 of the soybean cyst nematode (SCN) using a total of 83 simple sequence repeat markers (SSR). Two GLM models were tested: model 1, where the FI was treated as a continuous variable, assuming a Gamma distribution with a logarithmic link function; and model 2, where the FI was treated as a categorical trait in a five-item hierarchy, assuming a multinomial distribution with a cumulative logit link function. The FI data of 108 recombinant inbred lines (RIL) confirmed the non-normal distribution for race 9 of the SCN (Shapiro-Wilk?s w=0.86, P<0.0001, skewness=1.52 and kurtosis=2.93). Eight RIL were confirmed to be resistant (FI≤10), and 23 to be highly susceptible (FI≥100). Both GLM models identified one QTL for SCN on the molecular linkage group G, between the markers Satt275 and Satt038 at 48.4 centiMorgans (P=0.017 and 0.033, for models 1 and 2, respectively). Additionally, these results were also compared with the CIM and Bayesian interval mapping (BIM) methods, assuming experimental data with a non-normal response, to determine the robustness and statistical power of these two methods for mapping QTLs. The results make clear that generalized linear modeling approach can be used as an efficient method to map QTLs in a continuous trait with a non-Gaussian distribution. CIM and BIM were robust enough for a reliable mapping of QTLs underlying nonnormally distributed data. Fil: Arriagada, Osvin. Universidad de Talca; Chile Fil: Ferreira, Marcia F. S.. Universidade Federal Do Espirito Santo; Brasil Fil: Cervigni, Gerardo Domingo Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (i); Argentina Fil: Schuster, Ivan. Central Cooperative for Agricultural Research; Brasil Fil: Scapim, Carlos A.. Universidade Estadual de Maringá; Brasil Fil: Mora, Freddy. Universidad de Talca; Chile |
description |
The Female Index (FI) is a relative measure of host suitability of a soybean line for a particular nematode population and often shows a non-normal distribution. Moreover, most quantitative trait loci (QTL) mapping methods assume that the phenotype follows a normal distribution such as composite interval mapping (CIM). Therefore, a generalized linear modeling (GLM) approach was employed to map QTL for resistance to race 9 of the soybean cyst nematode (SCN) using a total of 83 simple sequence repeat markers (SSR). Two GLM models were tested: model 1, where the FI was treated as a continuous variable, assuming a Gamma distribution with a logarithmic link function; and model 2, where the FI was treated as a categorical trait in a five-item hierarchy, assuming a multinomial distribution with a cumulative logit link function. The FI data of 108 recombinant inbred lines (RIL) confirmed the non-normal distribution for race 9 of the SCN (Shapiro-Wilk?s w=0.86, P<0.0001, skewness=1.52 and kurtosis=2.93). Eight RIL were confirmed to be resistant (FI≤10), and 23 to be highly susceptible (FI≥100). Both GLM models identified one QTL for SCN on the molecular linkage group G, between the markers Satt275 and Satt038 at 48.4 centiMorgans (P=0.017 and 0.033, for models 1 and 2, respectively). Additionally, these results were also compared with the CIM and Bayesian interval mapping (BIM) methods, assuming experimental data with a non-normal response, to determine the robustness and statistical power of these two methods for mapping QTLs. The results make clear that generalized linear modeling approach can be used as an efficient method to map QTLs in a continuous trait with a non-Gaussian distribution. CIM and BIM were robust enough for a reliable mapping of QTLs underlying nonnormally distributed data. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/7843 Arriagada, Osvin; Ferreira, Marcia F. S.; Cervigni, Gerardo Domingo Lucio; Schuster, Ivan; Scapim, Carlos A.; et al.; QTL mapping of soybean cyst nematode race 9: a generalized linear modeling approach; Southern Cross Publ; Australian Journal Of Crop Science; 9; 8; 8-2015; 721-727 1835-2693 1835-2707 |
url |
http://hdl.handle.net/11336/7843 |
identifier_str_mv |
Arriagada, Osvin; Ferreira, Marcia F. S.; Cervigni, Gerardo Domingo Lucio; Schuster, Ivan; Scapim, Carlos A.; et al.; QTL mapping of soybean cyst nematode race 9: a generalized linear modeling approach; Southern Cross Publ; Australian Journal Of Crop Science; 9; 8; 8-2015; 721-727 1835-2693 1835-2707 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.cropj.com/arriagada_9_8_2015_721_727.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Southern Cross Publ |
publisher.none.fl_str_mv |
Southern Cross Publ |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613876436434944 |
score |
13.070432 |