Optimization and production of probiotic and antimycotoxin yeast biomass using bioethanol industry waste via response surface methodology
- Autores
- Fochesato, Analía Silvia; Galvagno, Miguel Angel; Dogi, Cecilia Ana; Cerrutti, Patricia; Gonzalez Pereyra, Maria Laura; Flores, Marcelo David; Cavaglieri, Lilia Reneé
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Saccharomyces cerevisiae RC016 presents probiotic and mycotoxin adsorbent properties for use as feed additive. The improvement of S. cerevisiae RC016 biomass production using an agro-industrial waste such as Dried Distillers'Grains and Solubles (DDGs) that pollute the environment can contribute to sustainable development of the process and reduce the costs of large-scale production. In order to avoid theobstruction of the fermentor?s stirring mechanism with solid particles a novel pre treatment of DDGs was conducted to concentrate carbon sources levels. The design of experiments were performed using four factor-three-level Box-Behnken design (carbon source concentration, nitrogen source concentration, yeast extract concentration and incubation time) coupled with response surface methodology to evaluate theinteraction between two factors in order to determine the optimum process conditions. A quadratic model was suggested for the predictionof biomass production. The F-value and p-value of the model indicated that it was statistically significant at 95 percent confidence interval. Inaddition, R2 value of the model indicated an acceptable accuracy. The results were validated at bioreactor level showing that the specific growthrate on the optimized medium (0.34h-1) increased 112.5% compared to the initial non-optimized medium (0.16h-1), the duplication time showeda decrease of 52.9%. Optimization enabled productivity (0.451gL-1h-1) nine times higher than the initial one (0.062gL-1h-1), thus 65% more biomass was obtained (5.20gL-1). The use of biomass DDGse derived from bioethanol production promotes the sustainable and green way of biomass production.
Fil: Fochesato, Analía Silvia. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Microbiología e Inmunología. Cátedra de Micología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Galvagno, Miguel Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); Argentina
Fil: Dogi, Cecilia Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Microbiología e Inmunología. Cátedra de Micología; Argentina
Fil: Cerrutti, Patricia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias. Carrera de Especialista en Area de Bromatología y Tecnología de la Industrialización de Alimentos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Gonzalez Pereyra, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Microbiología e Inmunología. Cátedra de Micología; Argentina
Fil: Flores, Marcelo David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina
Fil: Cavaglieri, Lilia Reneé. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Microbiología e Inmunología. Cátedra de Micología; Argentina - Materia
-
BIOMASS PRODUCTION
BIOETHANOL INDUSTRY WASTE
DISTILLER'S GRAINS AND SOLUBLES
SACCHAROMYCES CEREVISIAE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/92287
Ver los metadatos del registro completo
id |
CONICETDig_34c595c4eb8f1bd7a10e788d2087cc25 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/92287 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Optimization and production of probiotic and antimycotoxin yeast biomass using bioethanol industry waste via response surface methodologyFochesato, Analía SilviaGalvagno, Miguel AngelDogi, Cecilia AnaCerrutti, PatriciaGonzalez Pereyra, Maria LauraFlores, Marcelo DavidCavaglieri, Lilia ReneéBIOMASS PRODUCTIONBIOETHANOL INDUSTRY WASTEDISTILLER'S GRAINS AND SOLUBLESSACCHAROMYCES CEREVISIAEhttps://purl.org/becyt/ford/2.9https://purl.org/becyt/ford/2Saccharomyces cerevisiae RC016 presents probiotic and mycotoxin adsorbent properties for use as feed additive. The improvement of S. cerevisiae RC016 biomass production using an agro-industrial waste such as Dried Distillers'Grains and Solubles (DDGs) that pollute the environment can contribute to sustainable development of the process and reduce the costs of large-scale production. In order to avoid theobstruction of the fermentor?s stirring mechanism with solid particles a novel pre treatment of DDGs was conducted to concentrate carbon sources levels. The design of experiments were performed using four factor-three-level Box-Behnken design (carbon source concentration, nitrogen source concentration, yeast extract concentration and incubation time) coupled with response surface methodology to evaluate theinteraction between two factors in order to determine the optimum process conditions. A quadratic model was suggested for the predictionof biomass production. The F-value and p-value of the model indicated that it was statistically significant at 95 percent confidence interval. Inaddition, R2 value of the model indicated an acceptable accuracy. The results were validated at bioreactor level showing that the specific growthrate on the optimized medium (0.34h-1) increased 112.5% compared to the initial non-optimized medium (0.16h-1), the duplication time showeda decrease of 52.9%. Optimization enabled productivity (0.451gL-1h-1) nine times higher than the initial one (0.062gL-1h-1), thus 65% more biomass was obtained (5.20gL-1). The use of biomass DDGse derived from bioethanol production promotes the sustainable and green way of biomass production.Fil: Fochesato, Analía Silvia. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Microbiología e Inmunología. Cátedra de Micología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Galvagno, Miguel Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Dogi, Cecilia Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Microbiología e Inmunología. Cátedra de Micología; ArgentinaFil: Cerrutti, Patricia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias. Carrera de Especialista en Area de Bromatología y Tecnología de la Industrialización de Alimentos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gonzalez Pereyra, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Microbiología e Inmunología. Cátedra de Micología; ArgentinaFil: Flores, Marcelo David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Cavaglieri, Lilia Reneé. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Microbiología e Inmunología. Cátedra de Micología; ArgentinaJuniper Publishers Inc.2018-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/92287Fochesato, Analía Silvia; Galvagno, Miguel Angel; Dogi, Cecilia Ana; Cerrutti, Patricia; Gonzalez Pereyra, Maria Laura; et al.; Optimization and production of probiotic and antimycotoxin yeast biomass using bioethanol industry waste via response surface methodology; Juniper Publishers Inc.; Advances in Biotechnology and Microbiology; 8; 1; 2-20182474-7637CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://juniperpublishers.com/aibm/AIBM.MS.ID.555727.phpinfo:eu-repo/semantics/altIdentifier/doi/10.19080/AIBM.2018.08.555727info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:58:57Zoai:ri.conicet.gov.ar:11336/92287instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:58:57.932CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Optimization and production of probiotic and antimycotoxin yeast biomass using bioethanol industry waste via response surface methodology |
title |
Optimization and production of probiotic and antimycotoxin yeast biomass using bioethanol industry waste via response surface methodology |
spellingShingle |
Optimization and production of probiotic and antimycotoxin yeast biomass using bioethanol industry waste via response surface methodology Fochesato, Analía Silvia BIOMASS PRODUCTION BIOETHANOL INDUSTRY WASTE DISTILLER'S GRAINS AND SOLUBLES SACCHAROMYCES CEREVISIAE |
title_short |
Optimization and production of probiotic and antimycotoxin yeast biomass using bioethanol industry waste via response surface methodology |
title_full |
Optimization and production of probiotic and antimycotoxin yeast biomass using bioethanol industry waste via response surface methodology |
title_fullStr |
Optimization and production of probiotic and antimycotoxin yeast biomass using bioethanol industry waste via response surface methodology |
title_full_unstemmed |
Optimization and production of probiotic and antimycotoxin yeast biomass using bioethanol industry waste via response surface methodology |
title_sort |
Optimization and production of probiotic and antimycotoxin yeast biomass using bioethanol industry waste via response surface methodology |
dc.creator.none.fl_str_mv |
Fochesato, Analía Silvia Galvagno, Miguel Angel Dogi, Cecilia Ana Cerrutti, Patricia Gonzalez Pereyra, Maria Laura Flores, Marcelo David Cavaglieri, Lilia Reneé |
author |
Fochesato, Analía Silvia |
author_facet |
Fochesato, Analía Silvia Galvagno, Miguel Angel Dogi, Cecilia Ana Cerrutti, Patricia Gonzalez Pereyra, Maria Laura Flores, Marcelo David Cavaglieri, Lilia Reneé |
author_role |
author |
author2 |
Galvagno, Miguel Angel Dogi, Cecilia Ana Cerrutti, Patricia Gonzalez Pereyra, Maria Laura Flores, Marcelo David Cavaglieri, Lilia Reneé |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
BIOMASS PRODUCTION BIOETHANOL INDUSTRY WASTE DISTILLER'S GRAINS AND SOLUBLES SACCHAROMYCES CEREVISIAE |
topic |
BIOMASS PRODUCTION BIOETHANOL INDUSTRY WASTE DISTILLER'S GRAINS AND SOLUBLES SACCHAROMYCES CEREVISIAE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.9 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Saccharomyces cerevisiae RC016 presents probiotic and mycotoxin adsorbent properties for use as feed additive. The improvement of S. cerevisiae RC016 biomass production using an agro-industrial waste such as Dried Distillers'Grains and Solubles (DDGs) that pollute the environment can contribute to sustainable development of the process and reduce the costs of large-scale production. In order to avoid theobstruction of the fermentor?s stirring mechanism with solid particles a novel pre treatment of DDGs was conducted to concentrate carbon sources levels. The design of experiments were performed using four factor-three-level Box-Behnken design (carbon source concentration, nitrogen source concentration, yeast extract concentration and incubation time) coupled with response surface methodology to evaluate theinteraction between two factors in order to determine the optimum process conditions. A quadratic model was suggested for the predictionof biomass production. The F-value and p-value of the model indicated that it was statistically significant at 95 percent confidence interval. Inaddition, R2 value of the model indicated an acceptable accuracy. The results were validated at bioreactor level showing that the specific growthrate on the optimized medium (0.34h-1) increased 112.5% compared to the initial non-optimized medium (0.16h-1), the duplication time showeda decrease of 52.9%. Optimization enabled productivity (0.451gL-1h-1) nine times higher than the initial one (0.062gL-1h-1), thus 65% more biomass was obtained (5.20gL-1). The use of biomass DDGse derived from bioethanol production promotes the sustainable and green way of biomass production. Fil: Fochesato, Analía Silvia. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Microbiología e Inmunología. Cátedra de Micología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina Fil: Galvagno, Miguel Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); Argentina Fil: Dogi, Cecilia Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Microbiología e Inmunología. Cátedra de Micología; Argentina Fil: Cerrutti, Patricia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias. Carrera de Especialista en Area de Bromatología y Tecnología de la Industrialización de Alimentos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Gonzalez Pereyra, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Microbiología e Inmunología. Cátedra de Micología; Argentina Fil: Flores, Marcelo David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina Fil: Cavaglieri, Lilia Reneé. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Microbiología e Inmunología. Cátedra de Micología; Argentina |
description |
Saccharomyces cerevisiae RC016 presents probiotic and mycotoxin adsorbent properties for use as feed additive. The improvement of S. cerevisiae RC016 biomass production using an agro-industrial waste such as Dried Distillers'Grains and Solubles (DDGs) that pollute the environment can contribute to sustainable development of the process and reduce the costs of large-scale production. In order to avoid theobstruction of the fermentor?s stirring mechanism with solid particles a novel pre treatment of DDGs was conducted to concentrate carbon sources levels. The design of experiments were performed using four factor-three-level Box-Behnken design (carbon source concentration, nitrogen source concentration, yeast extract concentration and incubation time) coupled with response surface methodology to evaluate theinteraction between two factors in order to determine the optimum process conditions. A quadratic model was suggested for the predictionof biomass production. The F-value and p-value of the model indicated that it was statistically significant at 95 percent confidence interval. Inaddition, R2 value of the model indicated an acceptable accuracy. The results were validated at bioreactor level showing that the specific growthrate on the optimized medium (0.34h-1) increased 112.5% compared to the initial non-optimized medium (0.16h-1), the duplication time showeda decrease of 52.9%. Optimization enabled productivity (0.451gL-1h-1) nine times higher than the initial one (0.062gL-1h-1), thus 65% more biomass was obtained (5.20gL-1). The use of biomass DDGse derived from bioethanol production promotes the sustainable and green way of biomass production. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/92287 Fochesato, Analía Silvia; Galvagno, Miguel Angel; Dogi, Cecilia Ana; Cerrutti, Patricia; Gonzalez Pereyra, Maria Laura; et al.; Optimization and production of probiotic and antimycotoxin yeast biomass using bioethanol industry waste via response surface methodology; Juniper Publishers Inc.; Advances in Biotechnology and Microbiology; 8; 1; 2-2018 2474-7637 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/92287 |
identifier_str_mv |
Fochesato, Analía Silvia; Galvagno, Miguel Angel; Dogi, Cecilia Ana; Cerrutti, Patricia; Gonzalez Pereyra, Maria Laura; et al.; Optimization and production of probiotic and antimycotoxin yeast biomass using bioethanol industry waste via response surface methodology; Juniper Publishers Inc.; Advances in Biotechnology and Microbiology; 8; 1; 2-2018 2474-7637 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://juniperpublishers.com/aibm/AIBM.MS.ID.555727.php info:eu-repo/semantics/altIdentifier/doi/10.19080/AIBM.2018.08.555727 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Juniper Publishers Inc. |
publisher.none.fl_str_mv |
Juniper Publishers Inc. |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269552786800640 |
score |
13.13397 |