Sensibilidad de un sistema de asimilación de datos por ensambles a diferentes configuraciones, implementado en el sur de Sudamérica

Autores
Dillon, María Eugenia; Garcia Skabar, Yanina; Kalnay, Eugenia; Ruiz, Juan Jose; Collini, Estela Angela
Año de publicación
2019
Idioma
español castellano
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Uno de los mayores desafíos en la predicción numérica del tiempo es el de reducir la incertidumbre de las condiciones iniciales. Con el fin de abordar esta problemática, variados esfuerzos se están llevando a cabo en el Servicio Meteorológico Nacional de Argentina (SMN). En este artículo se presenta la evaluación del sistema regional de asimilación por ensambles WRF-LETKF (Weather Research and Forecasting model - Local Ensemble Transform Kalman Filter). El dominio cubre el Sur de Sudamérica con una resolución horizontal de 40 km, y el período de prueba utilizado es de dos meses (noviembre y diciembre de 2012). El sistema de asimilación consta de un ensamble de 40 miembros e incorpora observaciones tanto convencionales como provenientes de satélites.En este trabajo, se evaluó el impacto de utilizar un ensamble multi física incluyendo en sus miembros distintas opciones de parametrizaciones de cumulus y capa límite planetaria. Se halló que dicha estrategia generalmente produce resultados mejores comparada con un sistema de ensamble en el cual todos los miembros poseen las mismas parametrizaciones. También se exploró la inclusión de bordes perturbados, pero no se encontró un impacto significativo con la metodología propuesta. Otro experimento consistió en la inclusión de los perfiles verticales de temperatura y humedad de los AIRS(Atmospheric Infrared Sounders) en la asimilación, cuya evaluación demostró un impacto positivo en los resultados. Finalmente, se comparó la media de los pronósticos por ensamble inicializados con los análisis de las diferentes variantes del sistema WRF-LETKF con un pronóstico determinístico del WRF inicializado con los análisis provistos por el GFS (Global Forecast System). Si bien generalmente dicha comparación mostró un impacto positivo de la asimilación de datos a escala regional, también mostró la necesidad de que el sistema regional mantenga la información de mayor escala provista por el modelo global.
One of the big challenges in numerical weather prediction is to reduce the uncertainty in the initial conditions. At the National Meteorological Service (SMN) of Argentina, many efforts have been carried out to address this issue. In this work, the regional Local Ensemble Transform Kalman Filter coupled with the Weather Research and Forecasting model (WRF-LETKF) system is evaluated. The domain covers most of Southern South America with an horizontal resolution of 40 km and a 2 month period is tested (November and December 2012). A 40 member ensemble is used to assimilate conventional and satellite observations. In this work a multi physics ensemble that includes different choices for the cumulus and planetary boundary layer parameterizations is evaluated. This experiment shows that, overall, the multi physics approach produce better results than a single physics configuration. The inclusion of boundary perturbations has also been explored although, it does not produce a significant impact in the current experimental settings. In addition, we explore the sensitivity to the assimilation of the Atmospheric Infrared Sounder (AIRS) temperature and moisture retrievals. The results indicate that the inclusion of these retrievals is a valuable alternative to deal with the scarcity of radiosondes observations in Southern South America. Finally, a comparison among the different WRF-LETKF ensemble mean forecasts and deterministic WRF forecasts initialized from the GFS (Global Forecast System) without assimilation, was carried on. Generally a positive impact of the data assimilation technique was achieved, although it was found that the regional system needs to keep large scale information from the global model.
Fil: Dillon, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional. Servicio Metereológico Nacional (sede Dorrego).; Argentina
Fil: Garcia Skabar, Yanina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional. Servicio Metereológico Nacional (sede Dorrego).; Argentina. Instituto Franco-Argentino sobre Estudios del Clima y sus Impactos; Argentina
Fil: Kalnay, Eugenia. University of Maryland; Estados Unidos
Fil: Ruiz, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Instituto Franco-Argentino sobre Estudios del Clima y sus Impactos; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina
Fil: Collini, Estela Angela. Ministerio de Defensa. Armada Argentina. Servicio de Hidrografía Naval; Argentina
Materia
ASIMILACION DE DATOS
ENSAMBLE MULTIESQUEMA
AIRS
LETKF
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/175177

id CONICETDig_34a6f02f3c7aaf77c719409a5ca5ba2d
oai_identifier_str oai:ri.conicet.gov.ar:11336/175177
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Sensibilidad de un sistema de asimilación de datos por ensambles a diferentes configuraciones, implementado en el sur de SudaméricaSensitivity of different configurations of an ensemble based data assimilation system implemented over southern South AmericaDillon, María EugeniaGarcia Skabar, YaninaKalnay, EugeniaRuiz, Juan JoseCollini, Estela AngelaASIMILACION DE DATOSENSAMBLE MULTIESQUEMAAIRSLETKFhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Uno de los mayores desafíos en la predicción numérica del tiempo es el de reducir la incertidumbre de las condiciones iniciales. Con el fin de abordar esta problemática, variados esfuerzos se están llevando a cabo en el Servicio Meteorológico Nacional de Argentina (SMN). En este artículo se presenta la evaluación del sistema regional de asimilación por ensambles WRF-LETKF (Weather Research and Forecasting model - Local Ensemble Transform Kalman Filter). El dominio cubre el Sur de Sudamérica con una resolución horizontal de 40 km, y el período de prueba utilizado es de dos meses (noviembre y diciembre de 2012). El sistema de asimilación consta de un ensamble de 40 miembros e incorpora observaciones tanto convencionales como provenientes de satélites.En este trabajo, se evaluó el impacto de utilizar un ensamble multi física incluyendo en sus miembros distintas opciones de parametrizaciones de cumulus y capa límite planetaria. Se halló que dicha estrategia generalmente produce resultados mejores comparada con un sistema de ensamble en el cual todos los miembros poseen las mismas parametrizaciones. También se exploró la inclusión de bordes perturbados, pero no se encontró un impacto significativo con la metodología propuesta. Otro experimento consistió en la inclusión de los perfiles verticales de temperatura y humedad de los AIRS(Atmospheric Infrared Sounders) en la asimilación, cuya evaluación demostró un impacto positivo en los resultados. Finalmente, se comparó la media de los pronósticos por ensamble inicializados con los análisis de las diferentes variantes del sistema WRF-LETKF con un pronóstico determinístico del WRF inicializado con los análisis provistos por el GFS (Global Forecast System). Si bien generalmente dicha comparación mostró un impacto positivo de la asimilación de datos a escala regional, también mostró la necesidad de que el sistema regional mantenga la información de mayor escala provista por el modelo global.One of the big challenges in numerical weather prediction is to reduce the uncertainty in the initial conditions. At the National Meteorological Service (SMN) of Argentina, many efforts have been carried out to address this issue. In this work, the regional Local Ensemble Transform Kalman Filter coupled with the Weather Research and Forecasting model (WRF-LETKF) system is evaluated. The domain covers most of Southern South America with an horizontal resolution of 40 km and a 2 month period is tested (November and December 2012). A 40 member ensemble is used to assimilate conventional and satellite observations. In this work a multi physics ensemble that includes different choices for the cumulus and planetary boundary layer parameterizations is evaluated. This experiment shows that, overall, the multi physics approach produce better results than a single physics configuration. The inclusion of boundary perturbations has also been explored although, it does not produce a significant impact in the current experimental settings. In addition, we explore the sensitivity to the assimilation of the Atmospheric Infrared Sounder (AIRS) temperature and moisture retrievals. The results indicate that the inclusion of these retrievals is a valuable alternative to deal with the scarcity of radiosondes observations in Southern South America. Finally, a comparison among the different WRF-LETKF ensemble mean forecasts and deterministic WRF forecasts initialized from the GFS (Global Forecast System) without assimilation, was carried on. Generally a positive impact of the data assimilation technique was achieved, although it was found that the regional system needs to keep large scale information from the global model.Fil: Dillon, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional. Servicio Metereológico Nacional (sede Dorrego).; ArgentinaFil: Garcia Skabar, Yanina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional. Servicio Metereológico Nacional (sede Dorrego).; Argentina. Instituto Franco-Argentino sobre Estudios del Clima y sus Impactos; ArgentinaFil: Kalnay, Eugenia. University of Maryland; Estados UnidosFil: Ruiz, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Instituto Franco-Argentino sobre Estudios del Clima y sus Impactos; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; ArgentinaFil: Collini, Estela Angela. Ministerio de Defensa. Armada Argentina. Servicio de Hidrografía Naval; ArgentinaCentro Argentino de Meteorólogos2019-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/175177Dillon, María Eugenia; Garcia Skabar, Yanina; Kalnay, Eugenia; Ruiz, Juan Jose; Collini, Estela Angela; Sensibilidad de un sistema de asimilación de datos por ensambles a diferentes configuraciones, implementado en el sur de Sudamérica; Centro Argentino de Meteorólogos; Meteorológica; 44; 2; 9-2019; 15-340325-187X1850-468XCONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/http://www.meteorologica.org.ar/nota/sensibilidad-de-un-sistema-de-asimilacion-de-datos-por-ensambles-a-diferentes-configuraciones-implementado-en-el-sur-de-sudamerica/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:32:26Zoai:ri.conicet.gov.ar:11336/175177instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:32:26.617CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Sensibilidad de un sistema de asimilación de datos por ensambles a diferentes configuraciones, implementado en el sur de Sudamérica
Sensitivity of different configurations of an ensemble based data assimilation system implemented over southern South America
title Sensibilidad de un sistema de asimilación de datos por ensambles a diferentes configuraciones, implementado en el sur de Sudamérica
spellingShingle Sensibilidad de un sistema de asimilación de datos por ensambles a diferentes configuraciones, implementado en el sur de Sudamérica
Dillon, María Eugenia
ASIMILACION DE DATOS
ENSAMBLE MULTIESQUEMA
AIRS
LETKF
title_short Sensibilidad de un sistema de asimilación de datos por ensambles a diferentes configuraciones, implementado en el sur de Sudamérica
title_full Sensibilidad de un sistema de asimilación de datos por ensambles a diferentes configuraciones, implementado en el sur de Sudamérica
title_fullStr Sensibilidad de un sistema de asimilación de datos por ensambles a diferentes configuraciones, implementado en el sur de Sudamérica
title_full_unstemmed Sensibilidad de un sistema de asimilación de datos por ensambles a diferentes configuraciones, implementado en el sur de Sudamérica
title_sort Sensibilidad de un sistema de asimilación de datos por ensambles a diferentes configuraciones, implementado en el sur de Sudamérica
dc.creator.none.fl_str_mv Dillon, María Eugenia
Garcia Skabar, Yanina
Kalnay, Eugenia
Ruiz, Juan Jose
Collini, Estela Angela
author Dillon, María Eugenia
author_facet Dillon, María Eugenia
Garcia Skabar, Yanina
Kalnay, Eugenia
Ruiz, Juan Jose
Collini, Estela Angela
author_role author
author2 Garcia Skabar, Yanina
Kalnay, Eugenia
Ruiz, Juan Jose
Collini, Estela Angela
author2_role author
author
author
author
dc.subject.none.fl_str_mv ASIMILACION DE DATOS
ENSAMBLE MULTIESQUEMA
AIRS
LETKF
topic ASIMILACION DE DATOS
ENSAMBLE MULTIESQUEMA
AIRS
LETKF
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Uno de los mayores desafíos en la predicción numérica del tiempo es el de reducir la incertidumbre de las condiciones iniciales. Con el fin de abordar esta problemática, variados esfuerzos se están llevando a cabo en el Servicio Meteorológico Nacional de Argentina (SMN). En este artículo se presenta la evaluación del sistema regional de asimilación por ensambles WRF-LETKF (Weather Research and Forecasting model - Local Ensemble Transform Kalman Filter). El dominio cubre el Sur de Sudamérica con una resolución horizontal de 40 km, y el período de prueba utilizado es de dos meses (noviembre y diciembre de 2012). El sistema de asimilación consta de un ensamble de 40 miembros e incorpora observaciones tanto convencionales como provenientes de satélites.En este trabajo, se evaluó el impacto de utilizar un ensamble multi física incluyendo en sus miembros distintas opciones de parametrizaciones de cumulus y capa límite planetaria. Se halló que dicha estrategia generalmente produce resultados mejores comparada con un sistema de ensamble en el cual todos los miembros poseen las mismas parametrizaciones. También se exploró la inclusión de bordes perturbados, pero no se encontró un impacto significativo con la metodología propuesta. Otro experimento consistió en la inclusión de los perfiles verticales de temperatura y humedad de los AIRS(Atmospheric Infrared Sounders) en la asimilación, cuya evaluación demostró un impacto positivo en los resultados. Finalmente, se comparó la media de los pronósticos por ensamble inicializados con los análisis de las diferentes variantes del sistema WRF-LETKF con un pronóstico determinístico del WRF inicializado con los análisis provistos por el GFS (Global Forecast System). Si bien generalmente dicha comparación mostró un impacto positivo de la asimilación de datos a escala regional, también mostró la necesidad de que el sistema regional mantenga la información de mayor escala provista por el modelo global.
One of the big challenges in numerical weather prediction is to reduce the uncertainty in the initial conditions. At the National Meteorological Service (SMN) of Argentina, many efforts have been carried out to address this issue. In this work, the regional Local Ensemble Transform Kalman Filter coupled with the Weather Research and Forecasting model (WRF-LETKF) system is evaluated. The domain covers most of Southern South America with an horizontal resolution of 40 km and a 2 month period is tested (November and December 2012). A 40 member ensemble is used to assimilate conventional and satellite observations. In this work a multi physics ensemble that includes different choices for the cumulus and planetary boundary layer parameterizations is evaluated. This experiment shows that, overall, the multi physics approach produce better results than a single physics configuration. The inclusion of boundary perturbations has also been explored although, it does not produce a significant impact in the current experimental settings. In addition, we explore the sensitivity to the assimilation of the Atmospheric Infrared Sounder (AIRS) temperature and moisture retrievals. The results indicate that the inclusion of these retrievals is a valuable alternative to deal with the scarcity of radiosondes observations in Southern South America. Finally, a comparison among the different WRF-LETKF ensemble mean forecasts and deterministic WRF forecasts initialized from the GFS (Global Forecast System) without assimilation, was carried on. Generally a positive impact of the data assimilation technique was achieved, although it was found that the regional system needs to keep large scale information from the global model.
Fil: Dillon, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional. Servicio Metereológico Nacional (sede Dorrego).; Argentina
Fil: Garcia Skabar, Yanina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional. Servicio Metereológico Nacional (sede Dorrego).; Argentina. Instituto Franco-Argentino sobre Estudios del Clima y sus Impactos; Argentina
Fil: Kalnay, Eugenia. University of Maryland; Estados Unidos
Fil: Ruiz, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Instituto Franco-Argentino sobre Estudios del Clima y sus Impactos; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina
Fil: Collini, Estela Angela. Ministerio de Defensa. Armada Argentina. Servicio de Hidrografía Naval; Argentina
description Uno de los mayores desafíos en la predicción numérica del tiempo es el de reducir la incertidumbre de las condiciones iniciales. Con el fin de abordar esta problemática, variados esfuerzos se están llevando a cabo en el Servicio Meteorológico Nacional de Argentina (SMN). En este artículo se presenta la evaluación del sistema regional de asimilación por ensambles WRF-LETKF (Weather Research and Forecasting model - Local Ensemble Transform Kalman Filter). El dominio cubre el Sur de Sudamérica con una resolución horizontal de 40 km, y el período de prueba utilizado es de dos meses (noviembre y diciembre de 2012). El sistema de asimilación consta de un ensamble de 40 miembros e incorpora observaciones tanto convencionales como provenientes de satélites.En este trabajo, se evaluó el impacto de utilizar un ensamble multi física incluyendo en sus miembros distintas opciones de parametrizaciones de cumulus y capa límite planetaria. Se halló que dicha estrategia generalmente produce resultados mejores comparada con un sistema de ensamble en el cual todos los miembros poseen las mismas parametrizaciones. También se exploró la inclusión de bordes perturbados, pero no se encontró un impacto significativo con la metodología propuesta. Otro experimento consistió en la inclusión de los perfiles verticales de temperatura y humedad de los AIRS(Atmospheric Infrared Sounders) en la asimilación, cuya evaluación demostró un impacto positivo en los resultados. Finalmente, se comparó la media de los pronósticos por ensamble inicializados con los análisis de las diferentes variantes del sistema WRF-LETKF con un pronóstico determinístico del WRF inicializado con los análisis provistos por el GFS (Global Forecast System). Si bien generalmente dicha comparación mostró un impacto positivo de la asimilación de datos a escala regional, también mostró la necesidad de que el sistema regional mantenga la información de mayor escala provista por el modelo global.
publishDate 2019
dc.date.none.fl_str_mv 2019-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/175177
Dillon, María Eugenia; Garcia Skabar, Yanina; Kalnay, Eugenia; Ruiz, Juan Jose; Collini, Estela Angela; Sensibilidad de un sistema de asimilación de datos por ensambles a diferentes configuraciones, implementado en el sur de Sudamérica; Centro Argentino de Meteorólogos; Meteorológica; 44; 2; 9-2019; 15-34
0325-187X
1850-468X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/175177
identifier_str_mv Dillon, María Eugenia; Garcia Skabar, Yanina; Kalnay, Eugenia; Ruiz, Juan Jose; Collini, Estela Angela; Sensibilidad de un sistema de asimilación de datos por ensambles a diferentes configuraciones, implementado en el sur de Sudamérica; Centro Argentino de Meteorólogos; Meteorológica; 44; 2; 9-2019; 15-34
0325-187X
1850-468X
CONICET Digital
CONICET
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.meteorologica.org.ar/nota/sensibilidad-de-un-sistema-de-asimilacion-de-datos-por-ensambles-a-diferentes-configuraciones-implementado-en-el-sur-de-sudamerica/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Centro Argentino de Meteorólogos
publisher.none.fl_str_mv Centro Argentino de Meteorólogos
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614338298511360
score 13.070432