How far does the defect tolerance of lead-halide perovskites range? The example of Bi impurities introducing efficient recombination centers

Autores
Yavari, M.; Ebadi, Firouzeh; Meloni, Simone; Wang, Zishuai; Yang, Terry Chien-Jen; Sun, Shijing; Schwartz, Heidi; Wang, Zaiwei; Niesen, Bjoern; Durantini, Javier Esteban; Rieder, Philipp; Tvingstedt, Kristofer; Buonassisi, Tonio; Choy, Wallace C.H.; Filippetti, Alessio; Dittrich, Thomas; Olthof, Selina; Correa Baena, Juan Pablo; Tress, Wolfgang
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
One of the key properties of lead-halide perovskites employed in solar cells is the defect tolerance of the materials, in particular regarding intrinsic point defects, which mainly form shallow traps. Considering that high luminescence yields and photovoltaic performance are obtained by simple solution processing from commercial chemicals, it is commonly anticipated that the defect tolerance-at least to a considerable degree-extends to grain boundaries and extrinsic defects, i.e. impurities, as well. However, the effect of impurities has hardly been investigated. Here, we intentionally introduce small quantities of bismuth (10 ppm to 2%) in solution to be incorporated in the perovskite films based on mixed cation mixed anion compositions. We observe that Bi impurities in the %-regime reduce charge carrier collection efficiency and, more importantly, that the open-circuit voltage decreases systematically with impurity concentration even in the ppm regime. This strong defect intolerance against Bi impurities comes along with reduced electroluminescence yields and charge carrier lifetimes obtained from transient photoluminescence experiments. Calculations based on molecular dynamics and density functional theory predict delocalized (≈0.16 eV) and localized deep (≈0.51 eV) trap states dependent on the structural arrangement of the surrounding atoms. Structural characterization supports the idea of Bi being present as a homogeneously spread point defect, which substitutes the Pb2+ by Bi3+ as seen from XPS and a reduction of the lattice parameter in XRD. Sensitive measurements of the photocurrent (by FTPS) and surface photovoltage (SPV) confirm the presence of tail states. Photoelectron spectroscopy measurements show evidence of a deep state. These results are consistent with the common idea of shallow traps being responsible for the reduced charge collection efficiency and the decreased fill factor, and deeper traps causing a substantial reduction of the open-circuit voltage. As Bi is only one potential impurity in the precursor salts used in perovskite solar cell fabrication, our findings open-up a research direction focusing on identifying and eliminating impurities that act as recombination centers-a topic that has so far not been fully considered in device optimization studies.
Fil: Yavari, M.. École Polytechnique Fédérale de Lausanne; Suiza
Fil: Ebadi, Firouzeh. École Polytechnique Fédérale de Lausanne; Suiza
Fil: Meloni, Simone. Università di Roma; Italia
Fil: Wang, Zishuai. École Polytechnique Fédérale de Lausanne; Suiza
Fil: Yang, Terry Chien-Jen. École Polytechnique Fédérale de Lausanne; Suiza
Fil: Sun, Shijing. Massachusetts Institute Of Technology; Estados Unidos
Fil: Schwartz, Heidi. University Of Cologne; Alemania
Fil: Wang, Zaiwei. École Polytechnique Fédérale de Lausanne; Suiza
Fil: Niesen, Bjoern. École Polytechnique Fédérale de Lausanne; Suiza
Fil: Durantini, Javier Esteban. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; Argentina
Fil: Rieder, Philipp. Julius Maximilian University Of Würzburg; Alemania
Fil: Tvingstedt, Kristofer. Julius Maximilian University Of Würzburg; Alemania
Fil: Buonassisi, Tonio. Massachusetts Institute Of Technology; Estados Unidos
Fil: Choy, Wallace C.H.. The University Of Hong Kong; Hong Kong
Fil: Filippetti, Alessio. Università Di Cagliari; Italia
Fil: Dittrich, Thomas. Helmholtz Center Berlin For Materials And Energy; Alemania
Fil: Olthof, Selina. University Of Cologne; Alemania
Fil: Correa Baena, Juan Pablo. Massachusetts Institute Of Technology; Estados Unidos
Fil: Tress, Wolfgang. École Polytechnique Fédérale de Lausanne; Suiza
Materia
PEROVSKITE
IMPURITIES
BISMUTH
SOLAR CELLS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/113162

id CONICETDig_348f7149dbee95d4da0c4d0082b3b162
oai_identifier_str oai:ri.conicet.gov.ar:11336/113162
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling How far does the defect tolerance of lead-halide perovskites range? The example of Bi impurities introducing efficient recombination centersYavari, M.Ebadi, FirouzehMeloni, SimoneWang, ZishuaiYang, Terry Chien-JenSun, ShijingSchwartz, HeidiWang, ZaiweiNiesen, BjoernDurantini, Javier EstebanRieder, PhilippTvingstedt, KristoferBuonassisi, TonioChoy, Wallace C.H.Filippetti, AlessioDittrich, ThomasOlthof, SelinaCorrea Baena, Juan PabloTress, WolfgangPEROVSKITEIMPURITIESBISMUTHSOLAR CELLShttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1One of the key properties of lead-halide perovskites employed in solar cells is the defect tolerance of the materials, in particular regarding intrinsic point defects, which mainly form shallow traps. Considering that high luminescence yields and photovoltaic performance are obtained by simple solution processing from commercial chemicals, it is commonly anticipated that the defect tolerance-at least to a considerable degree-extends to grain boundaries and extrinsic defects, i.e. impurities, as well. However, the effect of impurities has hardly been investigated. Here, we intentionally introduce small quantities of bismuth (10 ppm to 2%) in solution to be incorporated in the perovskite films based on mixed cation mixed anion compositions. We observe that Bi impurities in the %-regime reduce charge carrier collection efficiency and, more importantly, that the open-circuit voltage decreases systematically with impurity concentration even in the ppm regime. This strong defect intolerance against Bi impurities comes along with reduced electroluminescence yields and charge carrier lifetimes obtained from transient photoluminescence experiments. Calculations based on molecular dynamics and density functional theory predict delocalized (≈0.16 eV) and localized deep (≈0.51 eV) trap states dependent on the structural arrangement of the surrounding atoms. Structural characterization supports the idea of Bi being present as a homogeneously spread point defect, which substitutes the Pb2+ by Bi3+ as seen from XPS and a reduction of the lattice parameter in XRD. Sensitive measurements of the photocurrent (by FTPS) and surface photovoltage (SPV) confirm the presence of tail states. Photoelectron spectroscopy measurements show evidence of a deep state. These results are consistent with the common idea of shallow traps being responsible for the reduced charge collection efficiency and the decreased fill factor, and deeper traps causing a substantial reduction of the open-circuit voltage. As Bi is only one potential impurity in the precursor salts used in perovskite solar cell fabrication, our findings open-up a research direction focusing on identifying and eliminating impurities that act as recombination centers-a topic that has so far not been fully considered in device optimization studies.Fil: Yavari, M.. École Polytechnique Fédérale de Lausanne; SuizaFil: Ebadi, Firouzeh. École Polytechnique Fédérale de Lausanne; SuizaFil: Meloni, Simone. Università di Roma; ItaliaFil: Wang, Zishuai. École Polytechnique Fédérale de Lausanne; SuizaFil: Yang, Terry Chien-Jen. École Polytechnique Fédérale de Lausanne; SuizaFil: Sun, Shijing. Massachusetts Institute Of Technology; Estados UnidosFil: Schwartz, Heidi. University Of Cologne; AlemaniaFil: Wang, Zaiwei. École Polytechnique Fédérale de Lausanne; SuizaFil: Niesen, Bjoern. École Polytechnique Fédérale de Lausanne; SuizaFil: Durantini, Javier Esteban. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; ArgentinaFil: Rieder, Philipp. Julius Maximilian University Of Würzburg; AlemaniaFil: Tvingstedt, Kristofer. Julius Maximilian University Of Würzburg; AlemaniaFil: Buonassisi, Tonio. Massachusetts Institute Of Technology; Estados UnidosFil: Choy, Wallace C.H.. The University Of Hong Kong; Hong KongFil: Filippetti, Alessio. Università Di Cagliari; ItaliaFil: Dittrich, Thomas. Helmholtz Center Berlin For Materials And Energy; AlemaniaFil: Olthof, Selina. University Of Cologne; AlemaniaFil: Correa Baena, Juan Pablo. Massachusetts Institute Of Technology; Estados UnidosFil: Tress, Wolfgang. École Polytechnique Fédérale de Lausanne; SuizaRoyal Society of Chemistry2019-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/113162Yavari, M.; Ebadi, Firouzeh; Meloni, Simone; Wang, Zishuai; Yang, Terry Chien-Jen; et al.; How far does the defect tolerance of lead-halide perovskites range? The example of Bi impurities introducing efficient recombination centers; Royal Society of Chemistry; Journal of Materials Chemistry A; 7; 41; 3-2019; 23838-238532050-74882050-7496CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://pubs.rsc.org/en/Content/ArticleLanding/2019/TA/C9TA01744Einfo:eu-repo/semantics/altIdentifier/doi/10.1039/C9TA01744Einfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:25:00Zoai:ri.conicet.gov.ar:11336/113162instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:25:01.228CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv How far does the defect tolerance of lead-halide perovskites range? The example of Bi impurities introducing efficient recombination centers
title How far does the defect tolerance of lead-halide perovskites range? The example of Bi impurities introducing efficient recombination centers
spellingShingle How far does the defect tolerance of lead-halide perovskites range? The example of Bi impurities introducing efficient recombination centers
Yavari, M.
PEROVSKITE
IMPURITIES
BISMUTH
SOLAR CELLS
title_short How far does the defect tolerance of lead-halide perovskites range? The example of Bi impurities introducing efficient recombination centers
title_full How far does the defect tolerance of lead-halide perovskites range? The example of Bi impurities introducing efficient recombination centers
title_fullStr How far does the defect tolerance of lead-halide perovskites range? The example of Bi impurities introducing efficient recombination centers
title_full_unstemmed How far does the defect tolerance of lead-halide perovskites range? The example of Bi impurities introducing efficient recombination centers
title_sort How far does the defect tolerance of lead-halide perovskites range? The example of Bi impurities introducing efficient recombination centers
dc.creator.none.fl_str_mv Yavari, M.
Ebadi, Firouzeh
Meloni, Simone
Wang, Zishuai
Yang, Terry Chien-Jen
Sun, Shijing
Schwartz, Heidi
Wang, Zaiwei
Niesen, Bjoern
Durantini, Javier Esteban
Rieder, Philipp
Tvingstedt, Kristofer
Buonassisi, Tonio
Choy, Wallace C.H.
Filippetti, Alessio
Dittrich, Thomas
Olthof, Selina
Correa Baena, Juan Pablo
Tress, Wolfgang
author Yavari, M.
author_facet Yavari, M.
Ebadi, Firouzeh
Meloni, Simone
Wang, Zishuai
Yang, Terry Chien-Jen
Sun, Shijing
Schwartz, Heidi
Wang, Zaiwei
Niesen, Bjoern
Durantini, Javier Esteban
Rieder, Philipp
Tvingstedt, Kristofer
Buonassisi, Tonio
Choy, Wallace C.H.
Filippetti, Alessio
Dittrich, Thomas
Olthof, Selina
Correa Baena, Juan Pablo
Tress, Wolfgang
author_role author
author2 Ebadi, Firouzeh
Meloni, Simone
Wang, Zishuai
Yang, Terry Chien-Jen
Sun, Shijing
Schwartz, Heidi
Wang, Zaiwei
Niesen, Bjoern
Durantini, Javier Esteban
Rieder, Philipp
Tvingstedt, Kristofer
Buonassisi, Tonio
Choy, Wallace C.H.
Filippetti, Alessio
Dittrich, Thomas
Olthof, Selina
Correa Baena, Juan Pablo
Tress, Wolfgang
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv PEROVSKITE
IMPURITIES
BISMUTH
SOLAR CELLS
topic PEROVSKITE
IMPURITIES
BISMUTH
SOLAR CELLS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv One of the key properties of lead-halide perovskites employed in solar cells is the defect tolerance of the materials, in particular regarding intrinsic point defects, which mainly form shallow traps. Considering that high luminescence yields and photovoltaic performance are obtained by simple solution processing from commercial chemicals, it is commonly anticipated that the defect tolerance-at least to a considerable degree-extends to grain boundaries and extrinsic defects, i.e. impurities, as well. However, the effect of impurities has hardly been investigated. Here, we intentionally introduce small quantities of bismuth (10 ppm to 2%) in solution to be incorporated in the perovskite films based on mixed cation mixed anion compositions. We observe that Bi impurities in the %-regime reduce charge carrier collection efficiency and, more importantly, that the open-circuit voltage decreases systematically with impurity concentration even in the ppm regime. This strong defect intolerance against Bi impurities comes along with reduced electroluminescence yields and charge carrier lifetimes obtained from transient photoluminescence experiments. Calculations based on molecular dynamics and density functional theory predict delocalized (≈0.16 eV) and localized deep (≈0.51 eV) trap states dependent on the structural arrangement of the surrounding atoms. Structural characterization supports the idea of Bi being present as a homogeneously spread point defect, which substitutes the Pb2+ by Bi3+ as seen from XPS and a reduction of the lattice parameter in XRD. Sensitive measurements of the photocurrent (by FTPS) and surface photovoltage (SPV) confirm the presence of tail states. Photoelectron spectroscopy measurements show evidence of a deep state. These results are consistent with the common idea of shallow traps being responsible for the reduced charge collection efficiency and the decreased fill factor, and deeper traps causing a substantial reduction of the open-circuit voltage. As Bi is only one potential impurity in the precursor salts used in perovskite solar cell fabrication, our findings open-up a research direction focusing on identifying and eliminating impurities that act as recombination centers-a topic that has so far not been fully considered in device optimization studies.
Fil: Yavari, M.. École Polytechnique Fédérale de Lausanne; Suiza
Fil: Ebadi, Firouzeh. École Polytechnique Fédérale de Lausanne; Suiza
Fil: Meloni, Simone. Università di Roma; Italia
Fil: Wang, Zishuai. École Polytechnique Fédérale de Lausanne; Suiza
Fil: Yang, Terry Chien-Jen. École Polytechnique Fédérale de Lausanne; Suiza
Fil: Sun, Shijing. Massachusetts Institute Of Technology; Estados Unidos
Fil: Schwartz, Heidi. University Of Cologne; Alemania
Fil: Wang, Zaiwei. École Polytechnique Fédérale de Lausanne; Suiza
Fil: Niesen, Bjoern. École Polytechnique Fédérale de Lausanne; Suiza
Fil: Durantini, Javier Esteban. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; Argentina
Fil: Rieder, Philipp. Julius Maximilian University Of Würzburg; Alemania
Fil: Tvingstedt, Kristofer. Julius Maximilian University Of Würzburg; Alemania
Fil: Buonassisi, Tonio. Massachusetts Institute Of Technology; Estados Unidos
Fil: Choy, Wallace C.H.. The University Of Hong Kong; Hong Kong
Fil: Filippetti, Alessio. Università Di Cagliari; Italia
Fil: Dittrich, Thomas. Helmholtz Center Berlin For Materials And Energy; Alemania
Fil: Olthof, Selina. University Of Cologne; Alemania
Fil: Correa Baena, Juan Pablo. Massachusetts Institute Of Technology; Estados Unidos
Fil: Tress, Wolfgang. École Polytechnique Fédérale de Lausanne; Suiza
description One of the key properties of lead-halide perovskites employed in solar cells is the defect tolerance of the materials, in particular regarding intrinsic point defects, which mainly form shallow traps. Considering that high luminescence yields and photovoltaic performance are obtained by simple solution processing from commercial chemicals, it is commonly anticipated that the defect tolerance-at least to a considerable degree-extends to grain boundaries and extrinsic defects, i.e. impurities, as well. However, the effect of impurities has hardly been investigated. Here, we intentionally introduce small quantities of bismuth (10 ppm to 2%) in solution to be incorporated in the perovskite films based on mixed cation mixed anion compositions. We observe that Bi impurities in the %-regime reduce charge carrier collection efficiency and, more importantly, that the open-circuit voltage decreases systematically with impurity concentration even in the ppm regime. This strong defect intolerance against Bi impurities comes along with reduced electroluminescence yields and charge carrier lifetimes obtained from transient photoluminescence experiments. Calculations based on molecular dynamics and density functional theory predict delocalized (≈0.16 eV) and localized deep (≈0.51 eV) trap states dependent on the structural arrangement of the surrounding atoms. Structural characterization supports the idea of Bi being present as a homogeneously spread point defect, which substitutes the Pb2+ by Bi3+ as seen from XPS and a reduction of the lattice parameter in XRD. Sensitive measurements of the photocurrent (by FTPS) and surface photovoltage (SPV) confirm the presence of tail states. Photoelectron spectroscopy measurements show evidence of a deep state. These results are consistent with the common idea of shallow traps being responsible for the reduced charge collection efficiency and the decreased fill factor, and deeper traps causing a substantial reduction of the open-circuit voltage. As Bi is only one potential impurity in the precursor salts used in perovskite solar cell fabrication, our findings open-up a research direction focusing on identifying and eliminating impurities that act as recombination centers-a topic that has so far not been fully considered in device optimization studies.
publishDate 2019
dc.date.none.fl_str_mv 2019-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/113162
Yavari, M.; Ebadi, Firouzeh; Meloni, Simone; Wang, Zishuai; Yang, Terry Chien-Jen; et al.; How far does the defect tolerance of lead-halide perovskites range? The example of Bi impurities introducing efficient recombination centers; Royal Society of Chemistry; Journal of Materials Chemistry A; 7; 41; 3-2019; 23838-23853
2050-7488
2050-7496
CONICET Digital
CONICET
url http://hdl.handle.net/11336/113162
identifier_str_mv Yavari, M.; Ebadi, Firouzeh; Meloni, Simone; Wang, Zishuai; Yang, Terry Chien-Jen; et al.; How far does the defect tolerance of lead-halide perovskites range? The example of Bi impurities introducing efficient recombination centers; Royal Society of Chemistry; Journal of Materials Chemistry A; 7; 41; 3-2019; 23838-23853
2050-7488
2050-7496
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://pubs.rsc.org/en/Content/ArticleLanding/2019/TA/C9TA01744E
info:eu-repo/semantics/altIdentifier/doi/10.1039/C9TA01744E
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614248031846400
score 13.070432