Linear parameter-varying model to design control laws for an artificial pancreas
- Autores
- Colmegna, Patricio Hernán; Sanchez Peña, Ricardo Salvador; Gondhalekar, R.
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The contribution of this work is the generation of a control-oriented model for insulin-glucose dynamic regulation in type 1 diabetes mellitus (T1DM). The novelty of this model is that it includes the time-varying nature, and the inter-patient variability of the glucose-control problem. In addition, the model is well suited for well-known and standard controller synthesis procedures. The outcome is an average linear parameter-varying (LPV) model that captures the dynamics from the insulin delivery input to the glucose concentration output constructed based on the UVA/Padova metabolic simulator. Finally, a system-oriented reinterpretation of the classical ad-hoc 1800 rule is applied to adapt the model's gain. The effectiveness of this approach is quantified both in open- and closed-loop. The first one by computing the root mean square error (RMSE) between the glucose deviation predicted by the proposed model and the UVA/Padova one. The second measure is determined by using the ν-gap as a metric to determine distance, in terms of closed-loop performance, between both models. For comparison purposes, both open- (RMSE) and closed-loop (ν-gap metric) quality indicators are also computed for other control-oriented models previously presented. This model allows the design of LPV controllers in a straightforward way, considering its affine dependence on the time-varying parameter, which can be computed in real-time. Illustrative simulations are included. In addition, the presented modeling strategy was employed in the design of an artificial pancreas (AP) control law that successfully withstood rigorous testing using the UVA/Padova simulator, and that was subsequently deployed in a clinical trial campaign where five adults remained in closed-loop for 36 h. This was the first ever fully closed-loop clinical AP trial in Argentina, and the modeling strategy presented here is considered instrumental in resulting in a very successful clinical outcome.
Fil: Colmegna, Patricio Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina
Fil: Sanchez Peña, Ricardo Salvador. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Tecnológico de Buenos Aires; Argentina
Fil: Gondhalekar, R.. Harvard University; Estados Unidos - Materia
-
ARTIFICIAL PANCREAS
CONTROLLER SYNTHESIS
LPV MODEL
TYPE 1 DIABETES
Ν-GAP METRIC - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/99251
Ver los metadatos del registro completo
id |
CONICETDig_3419a8d651d7461e45b7a0c86dac4dd9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/99251 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Linear parameter-varying model to design control laws for an artificial pancreasColmegna, Patricio HernánSanchez Peña, Ricardo SalvadorGondhalekar, R.ARTIFICIAL PANCREASCONTROLLER SYNTHESISLPV MODELTYPE 1 DIABETESΝ-GAP METRIChttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2The contribution of this work is the generation of a control-oriented model for insulin-glucose dynamic regulation in type 1 diabetes mellitus (T1DM). The novelty of this model is that it includes the time-varying nature, and the inter-patient variability of the glucose-control problem. In addition, the model is well suited for well-known and standard controller synthesis procedures. The outcome is an average linear parameter-varying (LPV) model that captures the dynamics from the insulin delivery input to the glucose concentration output constructed based on the UVA/Padova metabolic simulator. Finally, a system-oriented reinterpretation of the classical ad-hoc 1800 rule is applied to adapt the model's gain. The effectiveness of this approach is quantified both in open- and closed-loop. The first one by computing the root mean square error (RMSE) between the glucose deviation predicted by the proposed model and the UVA/Padova one. The second measure is determined by using the ν-gap as a metric to determine distance, in terms of closed-loop performance, between both models. For comparison purposes, both open- (RMSE) and closed-loop (ν-gap metric) quality indicators are also computed for other control-oriented models previously presented. This model allows the design of LPV controllers in a straightforward way, considering its affine dependence on the time-varying parameter, which can be computed in real-time. Illustrative simulations are included. In addition, the presented modeling strategy was employed in the design of an artificial pancreas (AP) control law that successfully withstood rigorous testing using the UVA/Padova simulator, and that was subsequently deployed in a clinical trial campaign where five adults remained in closed-loop for 36 h. This was the first ever fully closed-loop clinical AP trial in Argentina, and the modeling strategy presented here is considered instrumental in resulting in a very successful clinical outcome.Fil: Colmegna, Patricio Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; ArgentinaFil: Sanchez Peña, Ricardo Salvador. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Tecnológico de Buenos Aires; ArgentinaFil: Gondhalekar, R.. Harvard University; Estados UnidosElsevier2018-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/99251Colmegna, Patricio Hernán; Sanchez Peña, Ricardo Salvador; Gondhalekar, R.; Linear parameter-varying model to design control laws for an artificial pancreas; Elsevier; Biomedical Signal Processing and Control; 40; 2-2018; 204-2131746-8094CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1746809417302306info:eu-repo/semantics/altIdentifier/doi/10.1016/j.bspc.2017.09.021info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:54Zoai:ri.conicet.gov.ar:11336/99251instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:54.8CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Linear parameter-varying model to design control laws for an artificial pancreas |
title |
Linear parameter-varying model to design control laws for an artificial pancreas |
spellingShingle |
Linear parameter-varying model to design control laws for an artificial pancreas Colmegna, Patricio Hernán ARTIFICIAL PANCREAS CONTROLLER SYNTHESIS LPV MODEL TYPE 1 DIABETES Ν-GAP METRIC |
title_short |
Linear parameter-varying model to design control laws for an artificial pancreas |
title_full |
Linear parameter-varying model to design control laws for an artificial pancreas |
title_fullStr |
Linear parameter-varying model to design control laws for an artificial pancreas |
title_full_unstemmed |
Linear parameter-varying model to design control laws for an artificial pancreas |
title_sort |
Linear parameter-varying model to design control laws for an artificial pancreas |
dc.creator.none.fl_str_mv |
Colmegna, Patricio Hernán Sanchez Peña, Ricardo Salvador Gondhalekar, R. |
author |
Colmegna, Patricio Hernán |
author_facet |
Colmegna, Patricio Hernán Sanchez Peña, Ricardo Salvador Gondhalekar, R. |
author_role |
author |
author2 |
Sanchez Peña, Ricardo Salvador Gondhalekar, R. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
ARTIFICIAL PANCREAS CONTROLLER SYNTHESIS LPV MODEL TYPE 1 DIABETES Ν-GAP METRIC |
topic |
ARTIFICIAL PANCREAS CONTROLLER SYNTHESIS LPV MODEL TYPE 1 DIABETES Ν-GAP METRIC |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The contribution of this work is the generation of a control-oriented model for insulin-glucose dynamic regulation in type 1 diabetes mellitus (T1DM). The novelty of this model is that it includes the time-varying nature, and the inter-patient variability of the glucose-control problem. In addition, the model is well suited for well-known and standard controller synthesis procedures. The outcome is an average linear parameter-varying (LPV) model that captures the dynamics from the insulin delivery input to the glucose concentration output constructed based on the UVA/Padova metabolic simulator. Finally, a system-oriented reinterpretation of the classical ad-hoc 1800 rule is applied to adapt the model's gain. The effectiveness of this approach is quantified both in open- and closed-loop. The first one by computing the root mean square error (RMSE) between the glucose deviation predicted by the proposed model and the UVA/Padova one. The second measure is determined by using the ν-gap as a metric to determine distance, in terms of closed-loop performance, between both models. For comparison purposes, both open- (RMSE) and closed-loop (ν-gap metric) quality indicators are also computed for other control-oriented models previously presented. This model allows the design of LPV controllers in a straightforward way, considering its affine dependence on the time-varying parameter, which can be computed in real-time. Illustrative simulations are included. In addition, the presented modeling strategy was employed in the design of an artificial pancreas (AP) control law that successfully withstood rigorous testing using the UVA/Padova simulator, and that was subsequently deployed in a clinical trial campaign where five adults remained in closed-loop for 36 h. This was the first ever fully closed-loop clinical AP trial in Argentina, and the modeling strategy presented here is considered instrumental in resulting in a very successful clinical outcome. Fil: Colmegna, Patricio Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina Fil: Sanchez Peña, Ricardo Salvador. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Tecnológico de Buenos Aires; Argentina Fil: Gondhalekar, R.. Harvard University; Estados Unidos |
description |
The contribution of this work is the generation of a control-oriented model for insulin-glucose dynamic regulation in type 1 diabetes mellitus (T1DM). The novelty of this model is that it includes the time-varying nature, and the inter-patient variability of the glucose-control problem. In addition, the model is well suited for well-known and standard controller synthesis procedures. The outcome is an average linear parameter-varying (LPV) model that captures the dynamics from the insulin delivery input to the glucose concentration output constructed based on the UVA/Padova metabolic simulator. Finally, a system-oriented reinterpretation of the classical ad-hoc 1800 rule is applied to adapt the model's gain. The effectiveness of this approach is quantified both in open- and closed-loop. The first one by computing the root mean square error (RMSE) between the glucose deviation predicted by the proposed model and the UVA/Padova one. The second measure is determined by using the ν-gap as a metric to determine distance, in terms of closed-loop performance, between both models. For comparison purposes, both open- (RMSE) and closed-loop (ν-gap metric) quality indicators are also computed for other control-oriented models previously presented. This model allows the design of LPV controllers in a straightforward way, considering its affine dependence on the time-varying parameter, which can be computed in real-time. Illustrative simulations are included. In addition, the presented modeling strategy was employed in the design of an artificial pancreas (AP) control law that successfully withstood rigorous testing using the UVA/Padova simulator, and that was subsequently deployed in a clinical trial campaign where five adults remained in closed-loop for 36 h. This was the first ever fully closed-loop clinical AP trial in Argentina, and the modeling strategy presented here is considered instrumental in resulting in a very successful clinical outcome. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/99251 Colmegna, Patricio Hernán; Sanchez Peña, Ricardo Salvador; Gondhalekar, R.; Linear parameter-varying model to design control laws for an artificial pancreas; Elsevier; Biomedical Signal Processing and Control; 40; 2-2018; 204-213 1746-8094 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/99251 |
identifier_str_mv |
Colmegna, Patricio Hernán; Sanchez Peña, Ricardo Salvador; Gondhalekar, R.; Linear parameter-varying model to design control laws for an artificial pancreas; Elsevier; Biomedical Signal Processing and Control; 40; 2-2018; 204-213 1746-8094 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1746809417302306 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.bspc.2017.09.021 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269933752287232 |
score |
13.13397 |