Pathway network inference from gene expression data
- Autores
- Ponzoni, Ignacio; Nueda, María José; Tarazona, Sonia; Götz, Stefan; Montaner, David; Dussaut, Julieta Sol; Dopazo, Joaquín; Conesa, Ana
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Background: The development of high-throughput omics technologies enabled genome-wide measurements of the activity of cellular elements and provides the analytical resources for the progress of the Systems Biology discipline. Analysis and interpretation of gene expression data has evolved from the gene to the pathway and interaction level, i.e. from the detection of differentially expressed genes, to the establishment of gene interaction networks and the identification of enriched functional categories. Still, the understanding of biological systems requires a further level of analysis that addresses the characterization of the interaction between functional modules. Results: We present a novel computational methodology to study the functional interconnections among the molecular elements of a biological system. The PANA approach uses high-throughput genomics measurements and a functional annotation scheme to extract an activity profile from each functional block -or pathway- followed by machine-learning methods to infer the relationships between these functional profiles. The result is a global, interconnected network of pathways that represents the functional cross-talk within the molecular system. We have applied this approach to describe the functional transcriptional connections during the yeast cell cycle and to identify pathways that change their connectivity in a disease condition using an Alzheimer example. Conclusions: PANA is a useful tool to deepen in our understanding of the functional interdependences that operate within complex biological systems. We show the approach is algorithmically consistent and the inferred network is well supported by the available functional data. The method allows the dissection of the molecular basis of the functional connections and we describe the different regulatory mechanisms that explain the network's topology obtained for the yeast cell cycle data.
Fil: Ponzoni, Ignacio. Universidad Nacional del Sur. Departamento de Ciencias e Ingenieria de la Computacion. Laboratorio de Investigación y Desarrollo en Computacion Cientifica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Planta Piloto de Ingeniería Química (i); Argentina
Fil: Nueda, María José. Universidad de Alicante; España
Fil: Tarazona, Sonia. Centro de Investigaciones Principe Felipe; España. Universidad de Valencia; España
Fil: Götz, Stefan. Centro de Investigaciones Principe Felipe; España
Fil: Montaner, David. Centro de Investigaciones Principe Felipe; España
Fil: Dussaut, Julieta Sol. Universidad Nacional del Sur. Departamento de Ciencias e Ingenieria de la Computacion. Laboratorio de Investigación y Desarrollo en Computacion Cientifica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Dopazo, Joaquín. Centro de Investigaciones Principe Felipe; España
Fil: Conesa, Ana. Centro de Investigaciones Principe Felipe; España - Materia
-
Pathways
Pathway Network
Gene Expression
Bioinformatics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/12460
Ver los metadatos del registro completo
id |
CONICETDig_33de2c209180aeac8289ffdb06123ed8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/12460 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Pathway network inference from gene expression dataPonzoni, IgnacioNueda, María JoséTarazona, SoniaGötz, StefanMontaner, DavidDussaut, Julieta SolDopazo, JoaquínConesa, AnaPathwaysPathway NetworkGene ExpressionBioinformaticshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Background: The development of high-throughput omics technologies enabled genome-wide measurements of the activity of cellular elements and provides the analytical resources for the progress of the Systems Biology discipline. Analysis and interpretation of gene expression data has evolved from the gene to the pathway and interaction level, i.e. from the detection of differentially expressed genes, to the establishment of gene interaction networks and the identification of enriched functional categories. Still, the understanding of biological systems requires a further level of analysis that addresses the characterization of the interaction between functional modules. Results: We present a novel computational methodology to study the functional interconnections among the molecular elements of a biological system. The PANA approach uses high-throughput genomics measurements and a functional annotation scheme to extract an activity profile from each functional block -or pathway- followed by machine-learning methods to infer the relationships between these functional profiles. The result is a global, interconnected network of pathways that represents the functional cross-talk within the molecular system. We have applied this approach to describe the functional transcriptional connections during the yeast cell cycle and to identify pathways that change their connectivity in a disease condition using an Alzheimer example. Conclusions: PANA is a useful tool to deepen in our understanding of the functional interdependences that operate within complex biological systems. We show the approach is algorithmically consistent and the inferred network is well supported by the available functional data. The method allows the dissection of the molecular basis of the functional connections and we describe the different regulatory mechanisms that explain the network's topology obtained for the yeast cell cycle data.Fil: Ponzoni, Ignacio. Universidad Nacional del Sur. Departamento de Ciencias e Ingenieria de la Computacion. Laboratorio de Investigación y Desarrollo en Computacion Cientifica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Planta Piloto de Ingeniería Química (i); ArgentinaFil: Nueda, María José. Universidad de Alicante; EspañaFil: Tarazona, Sonia. Centro de Investigaciones Principe Felipe; España. Universidad de Valencia; EspañaFil: Götz, Stefan. Centro de Investigaciones Principe Felipe; EspañaFil: Montaner, David. Centro de Investigaciones Principe Felipe; EspañaFil: Dussaut, Julieta Sol. Universidad Nacional del Sur. Departamento de Ciencias e Ingenieria de la Computacion. Laboratorio de Investigación y Desarrollo en Computacion Cientifica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Dopazo, Joaquín. Centro de Investigaciones Principe Felipe; EspañaFil: Conesa, Ana. Centro de Investigaciones Principe Felipe; EspañaBioMed Central2014-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/12460Ponzoni, Ignacio; Nueda, María José; Tarazona, Sonia; Götz, Stefan; Montaner, David; et al.; Pathway network inference from gene expression data; BioMed Central; Bmc Systems Biology; 8; supl. 2; 3-2014; 1-171752-0509enginfo:eu-repo/semantics/altIdentifier/url/http://bmcsystbiol.biomedcentral.com/articles/10.1186/1752-0509-8-S2-S7info:eu-repo/semantics/altIdentifier/doi/10.1186/1752-0509-8-S2-S7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:40:18Zoai:ri.conicet.gov.ar:11336/12460instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:40:18.395CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Pathway network inference from gene expression data |
title |
Pathway network inference from gene expression data |
spellingShingle |
Pathway network inference from gene expression data Ponzoni, Ignacio Pathways Pathway Network Gene Expression Bioinformatics |
title_short |
Pathway network inference from gene expression data |
title_full |
Pathway network inference from gene expression data |
title_fullStr |
Pathway network inference from gene expression data |
title_full_unstemmed |
Pathway network inference from gene expression data |
title_sort |
Pathway network inference from gene expression data |
dc.creator.none.fl_str_mv |
Ponzoni, Ignacio Nueda, María José Tarazona, Sonia Götz, Stefan Montaner, David Dussaut, Julieta Sol Dopazo, Joaquín Conesa, Ana |
author |
Ponzoni, Ignacio |
author_facet |
Ponzoni, Ignacio Nueda, María José Tarazona, Sonia Götz, Stefan Montaner, David Dussaut, Julieta Sol Dopazo, Joaquín Conesa, Ana |
author_role |
author |
author2 |
Nueda, María José Tarazona, Sonia Götz, Stefan Montaner, David Dussaut, Julieta Sol Dopazo, Joaquín Conesa, Ana |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
Pathways Pathway Network Gene Expression Bioinformatics |
topic |
Pathways Pathway Network Gene Expression Bioinformatics |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Background: The development of high-throughput omics technologies enabled genome-wide measurements of the activity of cellular elements and provides the analytical resources for the progress of the Systems Biology discipline. Analysis and interpretation of gene expression data has evolved from the gene to the pathway and interaction level, i.e. from the detection of differentially expressed genes, to the establishment of gene interaction networks and the identification of enriched functional categories. Still, the understanding of biological systems requires a further level of analysis that addresses the characterization of the interaction between functional modules. Results: We present a novel computational methodology to study the functional interconnections among the molecular elements of a biological system. The PANA approach uses high-throughput genomics measurements and a functional annotation scheme to extract an activity profile from each functional block -or pathway- followed by machine-learning methods to infer the relationships between these functional profiles. The result is a global, interconnected network of pathways that represents the functional cross-talk within the molecular system. We have applied this approach to describe the functional transcriptional connections during the yeast cell cycle and to identify pathways that change their connectivity in a disease condition using an Alzheimer example. Conclusions: PANA is a useful tool to deepen in our understanding of the functional interdependences that operate within complex biological systems. We show the approach is algorithmically consistent and the inferred network is well supported by the available functional data. The method allows the dissection of the molecular basis of the functional connections and we describe the different regulatory mechanisms that explain the network's topology obtained for the yeast cell cycle data. Fil: Ponzoni, Ignacio. Universidad Nacional del Sur. Departamento de Ciencias e Ingenieria de la Computacion. Laboratorio de Investigación y Desarrollo en Computacion Cientifica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Planta Piloto de Ingeniería Química (i); Argentina Fil: Nueda, María José. Universidad de Alicante; España Fil: Tarazona, Sonia. Centro de Investigaciones Principe Felipe; España. Universidad de Valencia; España Fil: Götz, Stefan. Centro de Investigaciones Principe Felipe; España Fil: Montaner, David. Centro de Investigaciones Principe Felipe; España Fil: Dussaut, Julieta Sol. Universidad Nacional del Sur. Departamento de Ciencias e Ingenieria de la Computacion. Laboratorio de Investigación y Desarrollo en Computacion Cientifica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Dopazo, Joaquín. Centro de Investigaciones Principe Felipe; España Fil: Conesa, Ana. Centro de Investigaciones Principe Felipe; España |
description |
Background: The development of high-throughput omics technologies enabled genome-wide measurements of the activity of cellular elements and provides the analytical resources for the progress of the Systems Biology discipline. Analysis and interpretation of gene expression data has evolved from the gene to the pathway and interaction level, i.e. from the detection of differentially expressed genes, to the establishment of gene interaction networks and the identification of enriched functional categories. Still, the understanding of biological systems requires a further level of analysis that addresses the characterization of the interaction between functional modules. Results: We present a novel computational methodology to study the functional interconnections among the molecular elements of a biological system. The PANA approach uses high-throughput genomics measurements and a functional annotation scheme to extract an activity profile from each functional block -or pathway- followed by machine-learning methods to infer the relationships between these functional profiles. The result is a global, interconnected network of pathways that represents the functional cross-talk within the molecular system. We have applied this approach to describe the functional transcriptional connections during the yeast cell cycle and to identify pathways that change their connectivity in a disease condition using an Alzheimer example. Conclusions: PANA is a useful tool to deepen in our understanding of the functional interdependences that operate within complex biological systems. We show the approach is algorithmically consistent and the inferred network is well supported by the available functional data. The method allows the dissection of the molecular basis of the functional connections and we describe the different regulatory mechanisms that explain the network's topology obtained for the yeast cell cycle data. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/12460 Ponzoni, Ignacio; Nueda, María José; Tarazona, Sonia; Götz, Stefan; Montaner, David; et al.; Pathway network inference from gene expression data; BioMed Central; Bmc Systems Biology; 8; supl. 2; 3-2014; 1-17 1752-0509 |
url |
http://hdl.handle.net/11336/12460 |
identifier_str_mv |
Ponzoni, Ignacio; Nueda, María José; Tarazona, Sonia; Götz, Stefan; Montaner, David; et al.; Pathway network inference from gene expression data; BioMed Central; Bmc Systems Biology; 8; supl. 2; 3-2014; 1-17 1752-0509 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://bmcsystbiol.biomedcentral.com/articles/10.1186/1752-0509-8-S2-S7 info:eu-repo/semantics/altIdentifier/doi/10.1186/1752-0509-8-S2-S7 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
BioMed Central |
publisher.none.fl_str_mv |
BioMed Central |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613275233288192 |
score |
13.070432 |