PBW deformations of a Fomin–Kirillov Algebra and other examples

Autores
Heckenberger, I.; Vendramin, Claudio Leandro
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We begin the study of PBW deformations of graded algebras relevant to the theory of Hopf algebras. One of our examples is the Fomin–Kirillov algebra E3. Another one appeared in a paper of García Iglesias and Vay. As a consequence of our methods, we determine when the deformations are semisimple and we are able to produce PBW bases and polynomial identities for these deformations.
Fil: Heckenberger, I.. Philipps-Universität Marburg; Alemania
Fil: Vendramin, Claudio Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
CLIFFORD ALGEBRA
FOMIN–KIRILLOV ALGEBRA
HOPF ALGEBRA
NICHOLS ALGEBRA
PBW DEFORMATION
POLYNOMIAL IDENTITY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/136213

id CONICETDig_3378e2e18768e76b06e5d0f9afa6db6c
oai_identifier_str oai:ri.conicet.gov.ar:11336/136213
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling PBW deformations of a Fomin–Kirillov Algebra and other examplesHeckenberger, I.Vendramin, Claudio LeandroCLIFFORD ALGEBRAFOMIN–KIRILLOV ALGEBRAHOPF ALGEBRANICHOLS ALGEBRAPBW DEFORMATIONPOLYNOMIAL IDENTITYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We begin the study of PBW deformations of graded algebras relevant to the theory of Hopf algebras. One of our examples is the Fomin–Kirillov algebra E3. Another one appeared in a paper of García Iglesias and Vay. As a consequence of our methods, we determine when the deformations are semisimple and we are able to produce PBW bases and polynomial identities for these deformations.Fil: Heckenberger, I.. Philipps-Universität Marburg; AlemaniaFil: Vendramin, Claudio Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaSpringer2018-09-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/136213Heckenberger, I.; Vendramin, Claudio Leandro; PBW deformations of a Fomin–Kirillov Algebra and other examples; Springer; Algebras and Representation Theory; 22; 6; 26-9-2018; 1513-15321386-923XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10468-018-9830-4info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10468-018-9830-4info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1703.10632info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:57:41Zoai:ri.conicet.gov.ar:11336/136213instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:57:42.03CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv PBW deformations of a Fomin–Kirillov Algebra and other examples
title PBW deformations of a Fomin–Kirillov Algebra and other examples
spellingShingle PBW deformations of a Fomin–Kirillov Algebra and other examples
Heckenberger, I.
CLIFFORD ALGEBRA
FOMIN–KIRILLOV ALGEBRA
HOPF ALGEBRA
NICHOLS ALGEBRA
PBW DEFORMATION
POLYNOMIAL IDENTITY
title_short PBW deformations of a Fomin–Kirillov Algebra and other examples
title_full PBW deformations of a Fomin–Kirillov Algebra and other examples
title_fullStr PBW deformations of a Fomin–Kirillov Algebra and other examples
title_full_unstemmed PBW deformations of a Fomin–Kirillov Algebra and other examples
title_sort PBW deformations of a Fomin–Kirillov Algebra and other examples
dc.creator.none.fl_str_mv Heckenberger, I.
Vendramin, Claudio Leandro
author Heckenberger, I.
author_facet Heckenberger, I.
Vendramin, Claudio Leandro
author_role author
author2 Vendramin, Claudio Leandro
author2_role author
dc.subject.none.fl_str_mv CLIFFORD ALGEBRA
FOMIN–KIRILLOV ALGEBRA
HOPF ALGEBRA
NICHOLS ALGEBRA
PBW DEFORMATION
POLYNOMIAL IDENTITY
topic CLIFFORD ALGEBRA
FOMIN–KIRILLOV ALGEBRA
HOPF ALGEBRA
NICHOLS ALGEBRA
PBW DEFORMATION
POLYNOMIAL IDENTITY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We begin the study of PBW deformations of graded algebras relevant to the theory of Hopf algebras. One of our examples is the Fomin–Kirillov algebra E3. Another one appeared in a paper of García Iglesias and Vay. As a consequence of our methods, we determine when the deformations are semisimple and we are able to produce PBW bases and polynomial identities for these deformations.
Fil: Heckenberger, I.. Philipps-Universität Marburg; Alemania
Fil: Vendramin, Claudio Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description We begin the study of PBW deformations of graded algebras relevant to the theory of Hopf algebras. One of our examples is the Fomin–Kirillov algebra E3. Another one appeared in a paper of García Iglesias and Vay. As a consequence of our methods, we determine when the deformations are semisimple and we are able to produce PBW bases and polynomial identities for these deformations.
publishDate 2018
dc.date.none.fl_str_mv 2018-09-26
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/136213
Heckenberger, I.; Vendramin, Claudio Leandro; PBW deformations of a Fomin–Kirillov Algebra and other examples; Springer; Algebras and Representation Theory; 22; 6; 26-9-2018; 1513-1532
1386-923X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/136213
identifier_str_mv Heckenberger, I.; Vendramin, Claudio Leandro; PBW deformations of a Fomin–Kirillov Algebra and other examples; Springer; Algebras and Representation Theory; 22; 6; 26-9-2018; 1513-1532
1386-923X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s10468-018-9830-4
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10468-018-9830-4
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1703.10632
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269477579784192
score 13.13397