Scheduling in additive manufacturing problems
- Autores
- Rodriguez, Jeanette; Rossit, Daniel Alejandro
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Scheduling problems in additive manufacturing is a problem that can involve considerably morecomplexity than single-stage scheduling problems, since machines can process more than one partwith different geometries simultaneously [1]. To achieve efficiency in terms of the used capacity of themachine, it is necessary to group as many parts as possible in a single job. Since the use of themachines in terms of time depends on the job being processed, how parts are grouped within eachjob comes critical. This implies that the resolution of the nesting problem will have a direct impact onthe objective function of the jobs Schedule. In this work, the objective function to be minimized is theTotal Completion time, wich is obtained by the sum of the completion time of each job. The biggestdifficulty is that the problem is NP-Hard [2], so a purely mathematical approach is insufficient. For thisreason, a hybrid method is proposed that allows linking the benefits of an approach based onmathematical programming but enhanced by heuristic methods. In this way, heuristics are developedthat address the nesting problem incorporating knowledge about the nature of the problem, such asthe influence of the parameters “height” and volume” of the parts in the definition of the Jobs; and thestructure of its solutions. Then, using mathematical programming, solve the scheduling in paralleladditive manufacturing machines. For the nesting stage, several heuristics were proposed andcompared, showing that those heuristics that best captured the influence of the parameterscontributed more to solving the problem.
Fil: Rodriguez, Jeanette. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina
Fil: Rossit, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina
XXI Latin Ibero-American Conference on Operations Research CLAIO 2022
Buenos Aires
Argentina
Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales - Materia
-
SCHEDULING
TOTAL COMPLETION TIME
HEURISTIC
PARALLEL MACHINE PROBLEM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/197919
Ver los metadatos del registro completo
id |
CONICETDig_32ffaff4dbc47f778f9fb8b67d7f835d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/197919 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Scheduling in additive manufacturing problemsRodriguez, JeanetteRossit, Daniel AlejandroSCHEDULINGTOTAL COMPLETION TIMEHEURISTICPARALLEL MACHINE PROBLEMhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2Scheduling problems in additive manufacturing is a problem that can involve considerably morecomplexity than single-stage scheduling problems, since machines can process more than one partwith different geometries simultaneously [1]. To achieve efficiency in terms of the used capacity of themachine, it is necessary to group as many parts as possible in a single job. Since the use of themachines in terms of time depends on the job being processed, how parts are grouped within eachjob comes critical. This implies that the resolution of the nesting problem will have a direct impact onthe objective function of the jobs Schedule. In this work, the objective function to be minimized is theTotal Completion time, wich is obtained by the sum of the completion time of each job. The biggestdifficulty is that the problem is NP-Hard [2], so a purely mathematical approach is insufficient. For thisreason, a hybrid method is proposed that allows linking the benefits of an approach based onmathematical programming but enhanced by heuristic methods. In this way, heuristics are developedthat address the nesting problem incorporating knowledge about the nature of the problem, such asthe influence of the parameters “height” and volume” of the parts in the definition of the Jobs; and thestructure of its solutions. Then, using mathematical programming, solve the scheduling in paralleladditive manufacturing machines. For the nesting stage, several heuristics were proposed andcompared, showing that those heuristics that best captured the influence of the parameterscontributed more to solving the problem.Fil: Rodriguez, Jeanette. Universidad Nacional del Sur. Departamento de Ingeniería; ArgentinaFil: Rossit, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; ArgentinaXXI Latin Ibero-American Conference on Operations Research CLAIO 2022Buenos AiresArgentinaUniversidad de Buenos Aires. Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales2022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectCongresoBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/197919Scheduling in additive manufacturing problems; XXI Latin Ibero-American Conference on Operations Research CLAIO 2022; Buenos Aires; Argentina; 2022; 138-138CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://claio2022.dc.uba.ar/docs/abstract-book.pdfInternacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:15:58Zoai:ri.conicet.gov.ar:11336/197919instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:15:58.602CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Scheduling in additive manufacturing problems |
title |
Scheduling in additive manufacturing problems |
spellingShingle |
Scheduling in additive manufacturing problems Rodriguez, Jeanette SCHEDULING TOTAL COMPLETION TIME HEURISTIC PARALLEL MACHINE PROBLEM |
title_short |
Scheduling in additive manufacturing problems |
title_full |
Scheduling in additive manufacturing problems |
title_fullStr |
Scheduling in additive manufacturing problems |
title_full_unstemmed |
Scheduling in additive manufacturing problems |
title_sort |
Scheduling in additive manufacturing problems |
dc.creator.none.fl_str_mv |
Rodriguez, Jeanette Rossit, Daniel Alejandro |
author |
Rodriguez, Jeanette |
author_facet |
Rodriguez, Jeanette Rossit, Daniel Alejandro |
author_role |
author |
author2 |
Rossit, Daniel Alejandro |
author2_role |
author |
dc.subject.none.fl_str_mv |
SCHEDULING TOTAL COMPLETION TIME HEURISTIC PARALLEL MACHINE PROBLEM |
topic |
SCHEDULING TOTAL COMPLETION TIME HEURISTIC PARALLEL MACHINE PROBLEM |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Scheduling problems in additive manufacturing is a problem that can involve considerably morecomplexity than single-stage scheduling problems, since machines can process more than one partwith different geometries simultaneously [1]. To achieve efficiency in terms of the used capacity of themachine, it is necessary to group as many parts as possible in a single job. Since the use of themachines in terms of time depends on the job being processed, how parts are grouped within eachjob comes critical. This implies that the resolution of the nesting problem will have a direct impact onthe objective function of the jobs Schedule. In this work, the objective function to be minimized is theTotal Completion time, wich is obtained by the sum of the completion time of each job. The biggestdifficulty is that the problem is NP-Hard [2], so a purely mathematical approach is insufficient. For thisreason, a hybrid method is proposed that allows linking the benefits of an approach based onmathematical programming but enhanced by heuristic methods. In this way, heuristics are developedthat address the nesting problem incorporating knowledge about the nature of the problem, such asthe influence of the parameters “height” and volume” of the parts in the definition of the Jobs; and thestructure of its solutions. Then, using mathematical programming, solve the scheduling in paralleladditive manufacturing machines. For the nesting stage, several heuristics were proposed andcompared, showing that those heuristics that best captured the influence of the parameterscontributed more to solving the problem. Fil: Rodriguez, Jeanette. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina Fil: Rossit, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina XXI Latin Ibero-American Conference on Operations Research CLAIO 2022 Buenos Aires Argentina Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
description |
Scheduling problems in additive manufacturing is a problem that can involve considerably morecomplexity than single-stage scheduling problems, since machines can process more than one partwith different geometries simultaneously [1]. To achieve efficiency in terms of the used capacity of themachine, it is necessary to group as many parts as possible in a single job. Since the use of themachines in terms of time depends on the job being processed, how parts are grouped within eachjob comes critical. This implies that the resolution of the nesting problem will have a direct impact onthe objective function of the jobs Schedule. In this work, the objective function to be minimized is theTotal Completion time, wich is obtained by the sum of the completion time of each job. The biggestdifficulty is that the problem is NP-Hard [2], so a purely mathematical approach is insufficient. For thisreason, a hybrid method is proposed that allows linking the benefits of an approach based onmathematical programming but enhanced by heuristic methods. In this way, heuristics are developedthat address the nesting problem incorporating knowledge about the nature of the problem, such asthe influence of the parameters “height” and volume” of the parts in the definition of the Jobs; and thestructure of its solutions. Then, using mathematical programming, solve the scheduling in paralleladditive manufacturing machines. For the nesting stage, several heuristics were proposed andcompared, showing that those heuristics that best captured the influence of the parameterscontributed more to solving the problem. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Congreso Book http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/197919 Scheduling in additive manufacturing problems; XXI Latin Ibero-American Conference on Operations Research CLAIO 2022; Buenos Aires; Argentina; 2022; 138-138 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/197919 |
identifier_str_mv |
Scheduling in additive manufacturing problems; XXI Latin Ibero-American Conference on Operations Research CLAIO 2022; Buenos Aires; Argentina; 2022; 138-138 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://claio2022.dc.uba.ar/docs/abstract-book.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Internacional |
dc.publisher.none.fl_str_mv |
Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
publisher.none.fl_str_mv |
Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980865552941056 |
score |
12.993085 |