The dissolved chemical and isotopic signature downflow the confluence of two large rivers: The case of the Parana and Paraguay rivers

Autores
Campodonico, Verena Agustina; Garcia, Maria Gabriela; Pasquini, Andrea Ines
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The Paraná River basin is one of the largest hydrological systems in South America (aprox. 2.6 x 106 Km2). Downflow the confluence of tributaries, most large rivers exhibit transverse and Longitudinal inhomogeneities that can be detected for tens or even hundreds of kilometers. Concordantly, a noticeable cross-sectional chemical asymmetry in the dissolved load was distinguished in the Middle Paraná River, after the confluence of its main tributaries (i.e., the Paraguay and Upper Paraná rivers). Water chemistry and isotopic signature in three cross-sections along the Middle Paraná River, as well as from main and minor tributaries, and some deep (105 m bs) and shallow boreholes (15 m bs) located near both river banks, were analyzed in order to define the extent of mixing and identify possible contributions from groundwater discharges. Downflow the confluence of the Upper Paraná and Paraguay rivers a chemical and isotopic asymmetry was observed, mainly through the values of EC, major ions (Ca2+, Na+, Mg2+, Cl- and SO42-), some trace elements (Fe, U, Th, Ba, Sr, As and REE) and stable isotopes (D18O and D2H). Towards its western margin, higher elemental concentrations which resembled that of the Paraguay River were measured, whereas at the eastern border, waters were more diluted and preserved the chemical signature of the Upper Paraná River. This variability remained detectable at least until 225 km downflow the confluence, where differences between western and eastern margins were less evident. At aprox. 580 km downflow the confluence, a slight inversion in the transverse chemical asymmetry was observed. This trend switch can be the result of the input of solutes from minor tributaries that reach the main channel from the East and/or may be due to higher groundwater discharges from the East bank. A mass balance model was applied, as a first approach, to estimate the groundwater inflow using the geochemical tracer 222Rn. The results indicate that groundwater contributions represent between 0.5% and 6% of the total water inputs to the Middle Paraná River under baseflow conditions. This implies that the chemical asymmetry in the Middle Parana River is mostly due to the incomplete mixing of the main tributaries. Though the influence of groundwater is not a determining factor in the chemical variability of the river, it may partially explain the higher concentrations of some trace elements found in the eastern margin aprox. 580 km downflow the confluence.
Fil: Campodonico, Verena Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; Argentina
Fil: Garcia, Maria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; Argentina
Fil: Pasquini, Andrea Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; Argentina
Materia
Middle Parana River
South America Large Rivers
Mixing of Waters
Mass Balance Model
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/43323

id CONICETDig_32f390aa052c8f4650d6fe78286410f8
oai_identifier_str oai:ri.conicet.gov.ar:11336/43323
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The dissolved chemical and isotopic signature downflow the confluence of two large rivers: The case of the Parana and Paraguay riversCampodonico, Verena AgustinaGarcia, Maria GabrielaPasquini, Andrea InesMiddle Parana RiverSouth America Large RiversMixing of WatersMass Balance Modelhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1The Paraná River basin is one of the largest hydrological systems in South America (aprox. 2.6 x 106 Km2). Downflow the confluence of tributaries, most large rivers exhibit transverse and Longitudinal inhomogeneities that can be detected for tens or even hundreds of kilometers. Concordantly, a noticeable cross-sectional chemical asymmetry in the dissolved load was distinguished in the Middle Paraná River, after the confluence of its main tributaries (i.e., the Paraguay and Upper Paraná rivers). Water chemistry and isotopic signature in three cross-sections along the Middle Paraná River, as well as from main and minor tributaries, and some deep (105 m bs) and shallow boreholes (15 m bs) located near both river banks, were analyzed in order to define the extent of mixing and identify possible contributions from groundwater discharges. Downflow the confluence of the Upper Paraná and Paraguay rivers a chemical and isotopic asymmetry was observed, mainly through the values of EC, major ions (Ca2+, Na+, Mg2+, Cl- and SO42-), some trace elements (Fe, U, Th, Ba, Sr, As and REE) and stable isotopes (D18O and D2H). Towards its western margin, higher elemental concentrations which resembled that of the Paraguay River were measured, whereas at the eastern border, waters were more diluted and preserved the chemical signature of the Upper Paraná River. This variability remained detectable at least until 225 km downflow the confluence, where differences between western and eastern margins were less evident. At aprox. 580 km downflow the confluence, a slight inversion in the transverse chemical asymmetry was observed. This trend switch can be the result of the input of solutes from minor tributaries that reach the main channel from the East and/or may be due to higher groundwater discharges from the East bank. A mass balance model was applied, as a first approach, to estimate the groundwater inflow using the geochemical tracer 222Rn. The results indicate that groundwater contributions represent between 0.5% and 6% of the total water inputs to the Middle Paraná River under baseflow conditions. This implies that the chemical asymmetry in the Middle Parana River is mostly due to the incomplete mixing of the main tributaries. Though the influence of groundwater is not a determining factor in the chemical variability of the river, it may partially explain the higher concentrations of some trace elements found in the eastern margin aprox. 580 km downflow the confluence.Fil: Campodonico, Verena Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Garcia, Maria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Pasquini, Andrea Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaElsevier Science2015-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/43323Campodonico, Verena Agustina; Garcia, Maria Gabriela; Pasquini, Andrea Ines; The dissolved chemical and isotopic signature downflow the confluence of two large rivers: The case of the Parana and Paraguay rivers; Elsevier Science; Journal Of Hydrology; 528; 9-2015; 161-1760022-1694CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022169415004400info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jhydrol.2015.06.027info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:33:10Zoai:ri.conicet.gov.ar:11336/43323instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:33:10.308CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The dissolved chemical and isotopic signature downflow the confluence of two large rivers: The case of the Parana and Paraguay rivers
title The dissolved chemical and isotopic signature downflow the confluence of two large rivers: The case of the Parana and Paraguay rivers
spellingShingle The dissolved chemical and isotopic signature downflow the confluence of two large rivers: The case of the Parana and Paraguay rivers
Campodonico, Verena Agustina
Middle Parana River
South America Large Rivers
Mixing of Waters
Mass Balance Model
title_short The dissolved chemical and isotopic signature downflow the confluence of two large rivers: The case of the Parana and Paraguay rivers
title_full The dissolved chemical and isotopic signature downflow the confluence of two large rivers: The case of the Parana and Paraguay rivers
title_fullStr The dissolved chemical and isotopic signature downflow the confluence of two large rivers: The case of the Parana and Paraguay rivers
title_full_unstemmed The dissolved chemical and isotopic signature downflow the confluence of two large rivers: The case of the Parana and Paraguay rivers
title_sort The dissolved chemical and isotopic signature downflow the confluence of two large rivers: The case of the Parana and Paraguay rivers
dc.creator.none.fl_str_mv Campodonico, Verena Agustina
Garcia, Maria Gabriela
Pasquini, Andrea Ines
author Campodonico, Verena Agustina
author_facet Campodonico, Verena Agustina
Garcia, Maria Gabriela
Pasquini, Andrea Ines
author_role author
author2 Garcia, Maria Gabriela
Pasquini, Andrea Ines
author2_role author
author
dc.subject.none.fl_str_mv Middle Parana River
South America Large Rivers
Mixing of Waters
Mass Balance Model
topic Middle Parana River
South America Large Rivers
Mixing of Waters
Mass Balance Model
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The Paraná River basin is one of the largest hydrological systems in South America (aprox. 2.6 x 106 Km2). Downflow the confluence of tributaries, most large rivers exhibit transverse and Longitudinal inhomogeneities that can be detected for tens or even hundreds of kilometers. Concordantly, a noticeable cross-sectional chemical asymmetry in the dissolved load was distinguished in the Middle Paraná River, after the confluence of its main tributaries (i.e., the Paraguay and Upper Paraná rivers). Water chemistry and isotopic signature in three cross-sections along the Middle Paraná River, as well as from main and minor tributaries, and some deep (105 m bs) and shallow boreholes (15 m bs) located near both river banks, were analyzed in order to define the extent of mixing and identify possible contributions from groundwater discharges. Downflow the confluence of the Upper Paraná and Paraguay rivers a chemical and isotopic asymmetry was observed, mainly through the values of EC, major ions (Ca2+, Na+, Mg2+, Cl- and SO42-), some trace elements (Fe, U, Th, Ba, Sr, As and REE) and stable isotopes (D18O and D2H). Towards its western margin, higher elemental concentrations which resembled that of the Paraguay River were measured, whereas at the eastern border, waters were more diluted and preserved the chemical signature of the Upper Paraná River. This variability remained detectable at least until 225 km downflow the confluence, where differences between western and eastern margins were less evident. At aprox. 580 km downflow the confluence, a slight inversion in the transverse chemical asymmetry was observed. This trend switch can be the result of the input of solutes from minor tributaries that reach the main channel from the East and/or may be due to higher groundwater discharges from the East bank. A mass balance model was applied, as a first approach, to estimate the groundwater inflow using the geochemical tracer 222Rn. The results indicate that groundwater contributions represent between 0.5% and 6% of the total water inputs to the Middle Paraná River under baseflow conditions. This implies that the chemical asymmetry in the Middle Parana River is mostly due to the incomplete mixing of the main tributaries. Though the influence of groundwater is not a determining factor in the chemical variability of the river, it may partially explain the higher concentrations of some trace elements found in the eastern margin aprox. 580 km downflow the confluence.
Fil: Campodonico, Verena Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; Argentina
Fil: Garcia, Maria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; Argentina
Fil: Pasquini, Andrea Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; Argentina
description The Paraná River basin is one of the largest hydrological systems in South America (aprox. 2.6 x 106 Km2). Downflow the confluence of tributaries, most large rivers exhibit transverse and Longitudinal inhomogeneities that can be detected for tens or even hundreds of kilometers. Concordantly, a noticeable cross-sectional chemical asymmetry in the dissolved load was distinguished in the Middle Paraná River, after the confluence of its main tributaries (i.e., the Paraguay and Upper Paraná rivers). Water chemistry and isotopic signature in three cross-sections along the Middle Paraná River, as well as from main and minor tributaries, and some deep (105 m bs) and shallow boreholes (15 m bs) located near both river banks, were analyzed in order to define the extent of mixing and identify possible contributions from groundwater discharges. Downflow the confluence of the Upper Paraná and Paraguay rivers a chemical and isotopic asymmetry was observed, mainly through the values of EC, major ions (Ca2+, Na+, Mg2+, Cl- and SO42-), some trace elements (Fe, U, Th, Ba, Sr, As and REE) and stable isotopes (D18O and D2H). Towards its western margin, higher elemental concentrations which resembled that of the Paraguay River were measured, whereas at the eastern border, waters were more diluted and preserved the chemical signature of the Upper Paraná River. This variability remained detectable at least until 225 km downflow the confluence, where differences between western and eastern margins were less evident. At aprox. 580 km downflow the confluence, a slight inversion in the transverse chemical asymmetry was observed. This trend switch can be the result of the input of solutes from minor tributaries that reach the main channel from the East and/or may be due to higher groundwater discharges from the East bank. A mass balance model was applied, as a first approach, to estimate the groundwater inflow using the geochemical tracer 222Rn. The results indicate that groundwater contributions represent between 0.5% and 6% of the total water inputs to the Middle Paraná River under baseflow conditions. This implies that the chemical asymmetry in the Middle Parana River is mostly due to the incomplete mixing of the main tributaries. Though the influence of groundwater is not a determining factor in the chemical variability of the river, it may partially explain the higher concentrations of some trace elements found in the eastern margin aprox. 580 km downflow the confluence.
publishDate 2015
dc.date.none.fl_str_mv 2015-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/43323
Campodonico, Verena Agustina; Garcia, Maria Gabriela; Pasquini, Andrea Ines; The dissolved chemical and isotopic signature downflow the confluence of two large rivers: The case of the Parana and Paraguay rivers; Elsevier Science; Journal Of Hydrology; 528; 9-2015; 161-176
0022-1694
CONICET Digital
CONICET
url http://hdl.handle.net/11336/43323
identifier_str_mv Campodonico, Verena Agustina; Garcia, Maria Gabriela; Pasquini, Andrea Ines; The dissolved chemical and isotopic signature downflow the confluence of two large rivers: The case of the Parana and Paraguay rivers; Elsevier Science; Journal Of Hydrology; 528; 9-2015; 161-176
0022-1694
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022169415004400
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jhydrol.2015.06.027
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614346751082496
score 13.070432