Patterns of anabranching channels: the ultimate end-member adjustment of mega rivers

Autores
Latrubesse, Edgardo Manuel
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Large fluvial systems adjust to a combination of controls to form distinctive channels, which represent a dominant factor in the evolution of floodplain geomorphology and sedimentology. Fluvial geomorphology has commonly classified river channels into meandering, straight and braiding patterns, which are seen to represent a continuum of channel geometry. Anabranching patterns, rivers with multiple channels, however, are characteristic of many rivers. The identification of a combination of variables that discriminates specific channel patterns has been a significant focus of research in fluvial geomorphology. The development of this body of knowledge, however, has been established from medium and small rivers, and laboratory flume studies. Very few of these research ideas developed from analysis of large fluvial systems. This paper assesses the pattern of channel adjustment of large fluvial systems by employing hydraulic geometry, discharge, w/d, slope, grain size, stream power, specific stream power, and Froude number (Qmean > 1000 m3/s). The study demonstrates that methods currently used to discriminate channel patterns are not useful when applied to very large rivers. Further, with the exception of the Lower Mississippi, alluvial rivers with mean annual discharges greater than ~ 17,000 m3/s, here classified as mega rivers, do not generate single thread meandering or typical braided patterns. These mega rivers develop anabranching patterns. © 2008 Elsevier B.V. All rights reserved.
Fil: Latrubesse, Edgardo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Geológicas. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Investigaciones Geológicas; Argentina
Materia
Amazon River
Anabranching
Channel Patterns
Hydraulic Geometry
Large Rivers
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/74485

id CONICETDig_1b49f2a1c18dc040e0a7cca79c9e56a0
oai_identifier_str oai:ri.conicet.gov.ar:11336/74485
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Patterns of anabranching channels: the ultimate end-member adjustment of mega riversLatrubesse, Edgardo ManuelAmazon RiverAnabranchingChannel PatternsHydraulic GeometryLarge Rivershttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Large fluvial systems adjust to a combination of controls to form distinctive channels, which represent a dominant factor in the evolution of floodplain geomorphology and sedimentology. Fluvial geomorphology has commonly classified river channels into meandering, straight and braiding patterns, which are seen to represent a continuum of channel geometry. Anabranching patterns, rivers with multiple channels, however, are characteristic of many rivers. The identification of a combination of variables that discriminates specific channel patterns has been a significant focus of research in fluvial geomorphology. The development of this body of knowledge, however, has been established from medium and small rivers, and laboratory flume studies. Very few of these research ideas developed from analysis of large fluvial systems. This paper assesses the pattern of channel adjustment of large fluvial systems by employing hydraulic geometry, discharge, w/d, slope, grain size, stream power, specific stream power, and Froude number (Qmean > 1000 m3/s). The study demonstrates that methods currently used to discriminate channel patterns are not useful when applied to very large rivers. Further, with the exception of the Lower Mississippi, alluvial rivers with mean annual discharges greater than ~ 17,000 m3/s, here classified as mega rivers, do not generate single thread meandering or typical braided patterns. These mega rivers develop anabranching patterns. © 2008 Elsevier B.V. All rights reserved.Fil: Latrubesse, Edgardo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Geológicas. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Investigaciones Geológicas; ArgentinaElsevier Science2008-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/74485Latrubesse, Edgardo Manuel; Patterns of anabranching channels: the ultimate end-member adjustment of mega rivers; Elsevier Science; Geomorphology; 101; 1-2; 10-2008; 130-1450169-555XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.geomorph.2008.05.035info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0169555X08002389info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:00:36Zoai:ri.conicet.gov.ar:11336/74485instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:00:36.587CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Patterns of anabranching channels: the ultimate end-member adjustment of mega rivers
title Patterns of anabranching channels: the ultimate end-member adjustment of mega rivers
spellingShingle Patterns of anabranching channels: the ultimate end-member adjustment of mega rivers
Latrubesse, Edgardo Manuel
Amazon River
Anabranching
Channel Patterns
Hydraulic Geometry
Large Rivers
title_short Patterns of anabranching channels: the ultimate end-member adjustment of mega rivers
title_full Patterns of anabranching channels: the ultimate end-member adjustment of mega rivers
title_fullStr Patterns of anabranching channels: the ultimate end-member adjustment of mega rivers
title_full_unstemmed Patterns of anabranching channels: the ultimate end-member adjustment of mega rivers
title_sort Patterns of anabranching channels: the ultimate end-member adjustment of mega rivers
dc.creator.none.fl_str_mv Latrubesse, Edgardo Manuel
author Latrubesse, Edgardo Manuel
author_facet Latrubesse, Edgardo Manuel
author_role author
dc.subject.none.fl_str_mv Amazon River
Anabranching
Channel Patterns
Hydraulic Geometry
Large Rivers
topic Amazon River
Anabranching
Channel Patterns
Hydraulic Geometry
Large Rivers
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Large fluvial systems adjust to a combination of controls to form distinctive channels, which represent a dominant factor in the evolution of floodplain geomorphology and sedimentology. Fluvial geomorphology has commonly classified river channels into meandering, straight and braiding patterns, which are seen to represent a continuum of channel geometry. Anabranching patterns, rivers with multiple channels, however, are characteristic of many rivers. The identification of a combination of variables that discriminates specific channel patterns has been a significant focus of research in fluvial geomorphology. The development of this body of knowledge, however, has been established from medium and small rivers, and laboratory flume studies. Very few of these research ideas developed from analysis of large fluvial systems. This paper assesses the pattern of channel adjustment of large fluvial systems by employing hydraulic geometry, discharge, w/d, slope, grain size, stream power, specific stream power, and Froude number (Qmean > 1000 m3/s). The study demonstrates that methods currently used to discriminate channel patterns are not useful when applied to very large rivers. Further, with the exception of the Lower Mississippi, alluvial rivers with mean annual discharges greater than ~ 17,000 m3/s, here classified as mega rivers, do not generate single thread meandering or typical braided patterns. These mega rivers develop anabranching patterns. © 2008 Elsevier B.V. All rights reserved.
Fil: Latrubesse, Edgardo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Geológicas. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Investigaciones Geológicas; Argentina
description Large fluvial systems adjust to a combination of controls to form distinctive channels, which represent a dominant factor in the evolution of floodplain geomorphology and sedimentology. Fluvial geomorphology has commonly classified river channels into meandering, straight and braiding patterns, which are seen to represent a continuum of channel geometry. Anabranching patterns, rivers with multiple channels, however, are characteristic of many rivers. The identification of a combination of variables that discriminates specific channel patterns has been a significant focus of research in fluvial geomorphology. The development of this body of knowledge, however, has been established from medium and small rivers, and laboratory flume studies. Very few of these research ideas developed from analysis of large fluvial systems. This paper assesses the pattern of channel adjustment of large fluvial systems by employing hydraulic geometry, discharge, w/d, slope, grain size, stream power, specific stream power, and Froude number (Qmean > 1000 m3/s). The study demonstrates that methods currently used to discriminate channel patterns are not useful when applied to very large rivers. Further, with the exception of the Lower Mississippi, alluvial rivers with mean annual discharges greater than ~ 17,000 m3/s, here classified as mega rivers, do not generate single thread meandering or typical braided patterns. These mega rivers develop anabranching patterns. © 2008 Elsevier B.V. All rights reserved.
publishDate 2008
dc.date.none.fl_str_mv 2008-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/74485
Latrubesse, Edgardo Manuel; Patterns of anabranching channels: the ultimate end-member adjustment of mega rivers; Elsevier Science; Geomorphology; 101; 1-2; 10-2008; 130-145
0169-555X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/74485
identifier_str_mv Latrubesse, Edgardo Manuel; Patterns of anabranching channels: the ultimate end-member adjustment of mega rivers; Elsevier Science; Geomorphology; 101; 1-2; 10-2008; 130-145
0169-555X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.geomorph.2008.05.035
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0169555X08002389
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613789297672192
score 13.070432