The distribution of factorization patterns on linear families of polynomials over a finite field
- Autores
- Cesaratto, Eda; Matera, Guillermo; Pérez, Mariana
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We estimate the number |Aλ| of elements on a linear family A of monic polynomials of Fq[T] of degree n having factorization pattern λ:=1λ12λ2nλn. We show that |Aλ| = T(λ)qn-m + O(qn-m-1/2), where T(λ) is the proportion of elements of the symmetric group of n elements with cycle pattern λ and m is the codimension of A. Furthermore, if the family A under consideration is “sparse”, then |Aλ|=T(λ)qn-m+O(qn-m-1). Our estimates hold for fields Fq of characteristic greater than 2. We provide explicit upper bounds for the constants underlying the O-notation in terms of λ and A with “good” behavior. Our approach reduces the question to estimate the number of Fq-rational points of certain families of complete intersections defined over Fq. Such complete intersections are defined by polynomials which are invariant under the action of the symmetric group of permutations of the coordinates. This allows us to obtain critical information concerning their singular locus, from which precise estimates on their number of Fq-rational points are established.
Fil: Cesaratto, Eda. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Matera, Guillermo. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Pérez, Mariana. Universidad Nacional de General Sarmiento; Argentina - Materia
-
Finite Fields
Polynomials
Factorization Patterns - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/38592
Ver los metadatos del registro completo
id |
CONICETDig_31d7cf4925167b4ff0a8bcdd1436f01c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/38592 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The distribution of factorization patterns on linear families of polynomials over a finite fieldCesaratto, EdaMatera, GuillermoPérez, MarianaFinite FieldsPolynomialsFactorization Patternshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We estimate the number |Aλ| of elements on a linear family A of monic polynomials of Fq[T] of degree n having factorization pattern λ:=1λ12λ2nλn. We show that |Aλ| = T(λ)qn-m + O(qn-m-1/2), where T(λ) is the proportion of elements of the symmetric group of n elements with cycle pattern λ and m is the codimension of A. Furthermore, if the family A under consideration is “sparse”, then |Aλ|=T(λ)qn-m+O(qn-m-1). Our estimates hold for fields Fq of characteristic greater than 2. We provide explicit upper bounds for the constants underlying the O-notation in terms of λ and A with “good” behavior. Our approach reduces the question to estimate the number of Fq-rational points of certain families of complete intersections defined over Fq. Such complete intersections are defined by polynomials which are invariant under the action of the symmetric group of permutations of the coordinates. This allows us to obtain critical information concerning their singular locus, from which precise estimates on their number of Fq-rational points are established.Fil: Cesaratto, Eda. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Matera, Guillermo. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pérez, Mariana. Universidad Nacional de General Sarmiento; ArgentinaSpringer2017-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/38592Cesaratto, Eda; Matera, Guillermo; Pérez, Mariana; The distribution of factorization patterns on linear families of polynomials over a finite field; Springer; Combinatorica; 37; 5; 10-2017; 805-8360209-9683CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00493-015-3330-5info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00493-015-3330-5info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/pdf/1408.7014.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:23:45Zoai:ri.conicet.gov.ar:11336/38592instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:23:46.119CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The distribution of factorization patterns on linear families of polynomials over a finite field |
title |
The distribution of factorization patterns on linear families of polynomials over a finite field |
spellingShingle |
The distribution of factorization patterns on linear families of polynomials over a finite field Cesaratto, Eda Finite Fields Polynomials Factorization Patterns |
title_short |
The distribution of factorization patterns on linear families of polynomials over a finite field |
title_full |
The distribution of factorization patterns on linear families of polynomials over a finite field |
title_fullStr |
The distribution of factorization patterns on linear families of polynomials over a finite field |
title_full_unstemmed |
The distribution of factorization patterns on linear families of polynomials over a finite field |
title_sort |
The distribution of factorization patterns on linear families of polynomials over a finite field |
dc.creator.none.fl_str_mv |
Cesaratto, Eda Matera, Guillermo Pérez, Mariana |
author |
Cesaratto, Eda |
author_facet |
Cesaratto, Eda Matera, Guillermo Pérez, Mariana |
author_role |
author |
author2 |
Matera, Guillermo Pérez, Mariana |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Finite Fields Polynomials Factorization Patterns |
topic |
Finite Fields Polynomials Factorization Patterns |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We estimate the number |Aλ| of elements on a linear family A of monic polynomials of Fq[T] of degree n having factorization pattern λ:=1λ12λ2nλn. We show that |Aλ| = T(λ)qn-m + O(qn-m-1/2), where T(λ) is the proportion of elements of the symmetric group of n elements with cycle pattern λ and m is the codimension of A. Furthermore, if the family A under consideration is “sparse”, then |Aλ|=T(λ)qn-m+O(qn-m-1). Our estimates hold for fields Fq of characteristic greater than 2. We provide explicit upper bounds for the constants underlying the O-notation in terms of λ and A with “good” behavior. Our approach reduces the question to estimate the number of Fq-rational points of certain families of complete intersections defined over Fq. Such complete intersections are defined by polynomials which are invariant under the action of the symmetric group of permutations of the coordinates. This allows us to obtain critical information concerning their singular locus, from which precise estimates on their number of Fq-rational points are established. Fil: Cesaratto, Eda. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Matera, Guillermo. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Pérez, Mariana. Universidad Nacional de General Sarmiento; Argentina |
description |
We estimate the number |Aλ| of elements on a linear family A of monic polynomials of Fq[T] of degree n having factorization pattern λ:=1λ12λ2nλn. We show that |Aλ| = T(λ)qn-m + O(qn-m-1/2), where T(λ) is the proportion of elements of the symmetric group of n elements with cycle pattern λ and m is the codimension of A. Furthermore, if the family A under consideration is “sparse”, then |Aλ|=T(λ)qn-m+O(qn-m-1). Our estimates hold for fields Fq of characteristic greater than 2. We provide explicit upper bounds for the constants underlying the O-notation in terms of λ and A with “good” behavior. Our approach reduces the question to estimate the number of Fq-rational points of certain families of complete intersections defined over Fq. Such complete intersections are defined by polynomials which are invariant under the action of the symmetric group of permutations of the coordinates. This allows us to obtain critical information concerning their singular locus, from which precise estimates on their number of Fq-rational points are established. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/38592 Cesaratto, Eda; Matera, Guillermo; Pérez, Mariana; The distribution of factorization patterns on linear families of polynomials over a finite field; Springer; Combinatorica; 37; 5; 10-2017; 805-836 0209-9683 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/38592 |
identifier_str_mv |
Cesaratto, Eda; Matera, Guillermo; Pérez, Mariana; The distribution of factorization patterns on linear families of polynomials over a finite field; Springer; Combinatorica; 37; 5; 10-2017; 805-836 0209-9683 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00493-015-3330-5 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00493-015-3330-5 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/pdf/1408.7014.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614233155698688 |
score |
13.070432 |