A simple dierential evolution algorithm to solve the flexible job shop scheduling problem

Autores
Morero, Franco; Bermudez, Carlos; Salto, Carolina
Año de publicación
2019
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
This paper addresses the Flexible Job Shop Scheduling Problem (FJSSP) where the objective is to minimize the makespan. We develop a parallel hybrid Differential Evolution (DE) algorithm to tackle this problem. A random key representation of the FJSSP is adopted, which requires a very simple conversion mechanism to obtain a feasible schedule. This allows the DE algorithm to work on the continuous domain to explore the problem space of the discrete FJSSP. Moreover, a simple local search algorithm is embedded in the DE framework to balance the exploration and exploitation by enhancing the local searching ability. In addition, parallelism of the DE operations is included to improve the efficiency of whole algorithm. Experiments confirm the significant improvement achieved by integrating the propositions introduced in this study. Additional, test results show that our algorithm is competitive when compared with most existing approaches for the FJSSP.
Fil: Morero, Franco. Universidad Nacional de la Pampa. Facultad de Ingeniería; Argentina
Fil: Bermudez, Carlos. Universidad Nacional de la Pampa. Facultad de Ingeniería; Argentina
Fil: Salto, Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; Argentina. Universidad Nacional de la Pampa. Facultad de Ingeniería; Argentina
XXV Congreso Argentino de Ciencias de la Computación
Rio Cuarto
Argentina
Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Computación
Red de Universidades Nacionales con Carreras de Informática
Materia
DIFFFERENTIAL EVOLUTION ALGORITHMS
FLEXIBLE JOB SHOP SCHEDULING PROBLEM
METAHEURISTICS
OPTIMIZATION PROBLEMS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/161583

id CONICETDig_313bae56b102ca7e53733193719b7532
oai_identifier_str oai:ri.conicet.gov.ar:11336/161583
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A simple dierential evolution algorithm to solve the flexible job shop scheduling problemMorero, FrancoBermudez, CarlosSalto, CarolinaDIFFFERENTIAL EVOLUTION ALGORITHMSFLEXIBLE JOB SHOP SCHEDULING PROBLEMMETAHEURISTICSOPTIMIZATION PROBLEMShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1This paper addresses the Flexible Job Shop Scheduling Problem (FJSSP) where the objective is to minimize the makespan. We develop a parallel hybrid Differential Evolution (DE) algorithm to tackle this problem. A random key representation of the FJSSP is adopted, which requires a very simple conversion mechanism to obtain a feasible schedule. This allows the DE algorithm to work on the continuous domain to explore the problem space of the discrete FJSSP. Moreover, a simple local search algorithm is embedded in the DE framework to balance the exploration and exploitation by enhancing the local searching ability. In addition, parallelism of the DE operations is included to improve the efficiency of whole algorithm. Experiments confirm the significant improvement achieved by integrating the propositions introduced in this study. Additional, test results show that our algorithm is competitive when compared with most existing approaches for the FJSSP.Fil: Morero, Franco. Universidad Nacional de la Pampa. Facultad de Ingeniería; ArgentinaFil: Bermudez, Carlos. Universidad Nacional de la Pampa. Facultad de Ingeniería; ArgentinaFil: Salto, Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; Argentina. Universidad Nacional de la Pampa. Facultad de Ingeniería; ArgentinaXXV Congreso Argentino de Ciencias de la ComputaciónRio CuartoArgentinaUniversidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de ComputaciónRed de Universidades Nacionales con Carreras de InformáticaUniversidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de ComputaciónPesado, Patricia MabelArroyo, Marcelo Daniel2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectCongresoBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/161583A simple dierential evolution algorithm to solve the flexible job shop scheduling problem; XXV Congreso Argentino de Ciencias de la Computación; Rio Cuarto; Argentina; 2019; 2-11978-987-688-377-1CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.unirioeditora.com.ar/producto/xxv-congreso-argentino-ciencias-la-computacion-cacic-2019/Internacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:49:13Zoai:ri.conicet.gov.ar:11336/161583instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:49:14.127CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A simple dierential evolution algorithm to solve the flexible job shop scheduling problem
title A simple dierential evolution algorithm to solve the flexible job shop scheduling problem
spellingShingle A simple dierential evolution algorithm to solve the flexible job shop scheduling problem
Morero, Franco
DIFFFERENTIAL EVOLUTION ALGORITHMS
FLEXIBLE JOB SHOP SCHEDULING PROBLEM
METAHEURISTICS
OPTIMIZATION PROBLEMS
title_short A simple dierential evolution algorithm to solve the flexible job shop scheduling problem
title_full A simple dierential evolution algorithm to solve the flexible job shop scheduling problem
title_fullStr A simple dierential evolution algorithm to solve the flexible job shop scheduling problem
title_full_unstemmed A simple dierential evolution algorithm to solve the flexible job shop scheduling problem
title_sort A simple dierential evolution algorithm to solve the flexible job shop scheduling problem
dc.creator.none.fl_str_mv Morero, Franco
Bermudez, Carlos
Salto, Carolina
author Morero, Franco
author_facet Morero, Franco
Bermudez, Carlos
Salto, Carolina
author_role author
author2 Bermudez, Carlos
Salto, Carolina
author2_role author
author
dc.contributor.none.fl_str_mv Pesado, Patricia Mabel
Arroyo, Marcelo Daniel
dc.subject.none.fl_str_mv DIFFFERENTIAL EVOLUTION ALGORITHMS
FLEXIBLE JOB SHOP SCHEDULING PROBLEM
METAHEURISTICS
OPTIMIZATION PROBLEMS
topic DIFFFERENTIAL EVOLUTION ALGORITHMS
FLEXIBLE JOB SHOP SCHEDULING PROBLEM
METAHEURISTICS
OPTIMIZATION PROBLEMS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv This paper addresses the Flexible Job Shop Scheduling Problem (FJSSP) where the objective is to minimize the makespan. We develop a parallel hybrid Differential Evolution (DE) algorithm to tackle this problem. A random key representation of the FJSSP is adopted, which requires a very simple conversion mechanism to obtain a feasible schedule. This allows the DE algorithm to work on the continuous domain to explore the problem space of the discrete FJSSP. Moreover, a simple local search algorithm is embedded in the DE framework to balance the exploration and exploitation by enhancing the local searching ability. In addition, parallelism of the DE operations is included to improve the efficiency of whole algorithm. Experiments confirm the significant improvement achieved by integrating the propositions introduced in this study. Additional, test results show that our algorithm is competitive when compared with most existing approaches for the FJSSP.
Fil: Morero, Franco. Universidad Nacional de la Pampa. Facultad de Ingeniería; Argentina
Fil: Bermudez, Carlos. Universidad Nacional de la Pampa. Facultad de Ingeniería; Argentina
Fil: Salto, Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; Argentina. Universidad Nacional de la Pampa. Facultad de Ingeniería; Argentina
XXV Congreso Argentino de Ciencias de la Computación
Rio Cuarto
Argentina
Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Computación
Red de Universidades Nacionales con Carreras de Informática
description This paper addresses the Flexible Job Shop Scheduling Problem (FJSSP) where the objective is to minimize the makespan. We develop a parallel hybrid Differential Evolution (DE) algorithm to tackle this problem. A random key representation of the FJSSP is adopted, which requires a very simple conversion mechanism to obtain a feasible schedule. This allows the DE algorithm to work on the continuous domain to explore the problem space of the discrete FJSSP. Moreover, a simple local search algorithm is embedded in the DE framework to balance the exploration and exploitation by enhancing the local searching ability. In addition, parallelism of the DE operations is included to improve the efficiency of whole algorithm. Experiments confirm the significant improvement achieved by integrating the propositions introduced in this study. Additional, test results show that our algorithm is competitive when compared with most existing approaches for the FJSSP.
publishDate 2019
dc.date.none.fl_str_mv 2019
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Congreso
Book
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/161583
A simple dierential evolution algorithm to solve the flexible job shop scheduling problem; XXV Congreso Argentino de Ciencias de la Computación; Rio Cuarto; Argentina; 2019; 2-11
978-987-688-377-1
CONICET Digital
CONICET
url http://hdl.handle.net/11336/161583
identifier_str_mv A simple dierential evolution algorithm to solve the flexible job shop scheduling problem; XXV Congreso Argentino de Ciencias de la Computación; Rio Cuarto; Argentina; 2019; 2-11
978-987-688-377-1
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.unirioeditora.com.ar/producto/xxv-congreso-argentino-ciencias-la-computacion-cacic-2019/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.coverage.none.fl_str_mv Internacional
dc.publisher.none.fl_str_mv Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Computación
publisher.none.fl_str_mv Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Computación
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268960893960192
score 13.13397