Dynamical analysis of the Gliese-876 Laplace resonance

Autores
Marti, Javier Guillermo; Giuppone, Cristian Andrés; Beauge, Cristian
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The number of multiple-planet systems known to be involved in mean motion conmensurabilities has increased significantly since the Kepler mission. Although most correspond to two-planet resonances, multiple resonances have also been found. The Laplace resonance is a particular case of a three-body resonance in which the period ratio between consecutive pairs is n1/n2 ∼ n2/n3 ∼ 2/1. It is not clear how this triple resonance acts to stabilize (or not) the system. The most reliable extrasolar system located in a Laplace resonance is GJ 876, because it has two independent confirmations. However, best-fit parameters were obtained without previous knowledge of resonance structure, and not all possible stable solutions for the system have been explored. In the present work we explore the various configurations allowed by the Laplace resonance in the GJ 876 system by varying the planetary parameters of the third outer planet. We find that in this case the Laplace resonance is a stabilization mechanism in itself, defined by a tiny island of regular motion surrounded by (unstable) highly chaotic orbits. Low-eccentricity orbits and mutual inclinations from −20° to 20° are compatible with observations. A definite range of mass ratio must be assumed to maintain orbital stability. Finally, we provide constraints on the argument of pericentres and mean anomalies to ensure stability for this kind of system.
Fil: Marti, Javier Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomia Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomia Teórica y Experimental; Argentina
Fil: Giuppone, Cristian Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomia Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomia Teórica y Experimental; Argentina. Universidade de Aveiro; Portugal
Fil: Beauge, Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomia Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomia Teórica y Experimental; Argentina
Materia
Velocidad radial
Mecánica celeste
Formación de planetas
Formación de satélites
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/25844

id CONICETDig_30d7cbf0f008593559b5f1a835929394
oai_identifier_str oai:ri.conicet.gov.ar:11336/25844
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Dynamical analysis of the Gliese-876 Laplace resonanceMarti, Javier GuillermoGiuppone, Cristian AndrésBeauge, CristianVelocidad radialMecánica celesteFormación de planetasFormación de satéliteshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The number of multiple-planet systems known to be involved in mean motion conmensurabilities has increased significantly since the Kepler mission. Although most correspond to two-planet resonances, multiple resonances have also been found. The Laplace resonance is a particular case of a three-body resonance in which the period ratio between consecutive pairs is n1/n2 ∼ n2/n3 ∼ 2/1. It is not clear how this triple resonance acts to stabilize (or not) the system. The most reliable extrasolar system located in a Laplace resonance is GJ 876, because it has two independent confirmations. However, best-fit parameters were obtained without previous knowledge of resonance structure, and not all possible stable solutions for the system have been explored. In the present work we explore the various configurations allowed by the Laplace resonance in the GJ 876 system by varying the planetary parameters of the third outer planet. We find that in this case the Laplace resonance is a stabilization mechanism in itself, defined by a tiny island of regular motion surrounded by (unstable) highly chaotic orbits. Low-eccentricity orbits and mutual inclinations from −20° to 20° are compatible with observations. A definite range of mass ratio must be assumed to maintain orbital stability. Finally, we provide constraints on the argument of pericentres and mean anomalies to ensure stability for this kind of system.Fil: Marti, Javier Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomia Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomia Teórica y Experimental; ArgentinaFil: Giuppone, Cristian Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomia Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomia Teórica y Experimental; Argentina. Universidade de Aveiro; PortugalFil: Beauge, Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomia Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomia Teórica y Experimental; ArgentinaOxford University Press2013-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/25844Marti, Javier Guillermo; Giuppone, Cristian Andrés; Beauge, Cristian; Dynamical analysis of the Gliese-876 Laplace resonance; Oxford University Press; Monthly Notices of the Royal Astronomical Society; 433; 2; 6-2013; 928-9340035-8711CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1093/mnras/stt765info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/mnras/article-lookup/doi/10.1093/mnras/stt765info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1305.6768info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:58:46Zoai:ri.conicet.gov.ar:11336/25844instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:58:46.343CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Dynamical analysis of the Gliese-876 Laplace resonance
title Dynamical analysis of the Gliese-876 Laplace resonance
spellingShingle Dynamical analysis of the Gliese-876 Laplace resonance
Marti, Javier Guillermo
Velocidad radial
Mecánica celeste
Formación de planetas
Formación de satélites
title_short Dynamical analysis of the Gliese-876 Laplace resonance
title_full Dynamical analysis of the Gliese-876 Laplace resonance
title_fullStr Dynamical analysis of the Gliese-876 Laplace resonance
title_full_unstemmed Dynamical analysis of the Gliese-876 Laplace resonance
title_sort Dynamical analysis of the Gliese-876 Laplace resonance
dc.creator.none.fl_str_mv Marti, Javier Guillermo
Giuppone, Cristian Andrés
Beauge, Cristian
author Marti, Javier Guillermo
author_facet Marti, Javier Guillermo
Giuppone, Cristian Andrés
Beauge, Cristian
author_role author
author2 Giuppone, Cristian Andrés
Beauge, Cristian
author2_role author
author
dc.subject.none.fl_str_mv Velocidad radial
Mecánica celeste
Formación de planetas
Formación de satélites
topic Velocidad radial
Mecánica celeste
Formación de planetas
Formación de satélites
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The number of multiple-planet systems known to be involved in mean motion conmensurabilities has increased significantly since the Kepler mission. Although most correspond to two-planet resonances, multiple resonances have also been found. The Laplace resonance is a particular case of a three-body resonance in which the period ratio between consecutive pairs is n1/n2 ∼ n2/n3 ∼ 2/1. It is not clear how this triple resonance acts to stabilize (or not) the system. The most reliable extrasolar system located in a Laplace resonance is GJ 876, because it has two independent confirmations. However, best-fit parameters were obtained without previous knowledge of resonance structure, and not all possible stable solutions for the system have been explored. In the present work we explore the various configurations allowed by the Laplace resonance in the GJ 876 system by varying the planetary parameters of the third outer planet. We find that in this case the Laplace resonance is a stabilization mechanism in itself, defined by a tiny island of regular motion surrounded by (unstable) highly chaotic orbits. Low-eccentricity orbits and mutual inclinations from −20° to 20° are compatible with observations. A definite range of mass ratio must be assumed to maintain orbital stability. Finally, we provide constraints on the argument of pericentres and mean anomalies to ensure stability for this kind of system.
Fil: Marti, Javier Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomia Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomia Teórica y Experimental; Argentina
Fil: Giuppone, Cristian Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomia Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomia Teórica y Experimental; Argentina. Universidade de Aveiro; Portugal
Fil: Beauge, Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomia Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomia Teórica y Experimental; Argentina
description The number of multiple-planet systems known to be involved in mean motion conmensurabilities has increased significantly since the Kepler mission. Although most correspond to two-planet resonances, multiple resonances have also been found. The Laplace resonance is a particular case of a three-body resonance in which the period ratio between consecutive pairs is n1/n2 ∼ n2/n3 ∼ 2/1. It is not clear how this triple resonance acts to stabilize (or not) the system. The most reliable extrasolar system located in a Laplace resonance is GJ 876, because it has two independent confirmations. However, best-fit parameters were obtained without previous knowledge of resonance structure, and not all possible stable solutions for the system have been explored. In the present work we explore the various configurations allowed by the Laplace resonance in the GJ 876 system by varying the planetary parameters of the third outer planet. We find that in this case the Laplace resonance is a stabilization mechanism in itself, defined by a tiny island of regular motion surrounded by (unstable) highly chaotic orbits. Low-eccentricity orbits and mutual inclinations from −20° to 20° are compatible with observations. A definite range of mass ratio must be assumed to maintain orbital stability. Finally, we provide constraints on the argument of pericentres and mean anomalies to ensure stability for this kind of system.
publishDate 2013
dc.date.none.fl_str_mv 2013-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/25844
Marti, Javier Guillermo; Giuppone, Cristian Andrés; Beauge, Cristian; Dynamical analysis of the Gliese-876 Laplace resonance; Oxford University Press; Monthly Notices of the Royal Astronomical Society; 433; 2; 6-2013; 928-934
0035-8711
CONICET Digital
CONICET
url http://hdl.handle.net/11336/25844
identifier_str_mv Marti, Javier Guillermo; Giuppone, Cristian Andrés; Beauge, Cristian; Dynamical analysis of the Gliese-876 Laplace resonance; Oxford University Press; Monthly Notices of the Royal Astronomical Society; 433; 2; 6-2013; 928-934
0035-8711
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1093/mnras/stt765
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/mnras/article-lookup/doi/10.1093/mnras/stt765
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1305.6768
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Oxford University Press
publisher.none.fl_str_mv Oxford University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269540123148288
score 13.13397