Chaotic diffusion in the Gliese-876 planetary system
- Autores
- Martí, Javier Guillermo; Cincotta, Pablo Miguel; Beaugé, Cristian
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Chaotic diffusion is supposed to be responsible for orbital instabilities in planetary systems after the dissipation of the protoplanetary disc, and a natural consequence of irregular motion. In this paper, we show that resonant multiplanetary systems, despite being highly chaotic, not necessarily exhibit significant diffusion in phase space, and may still survive virtually unchanged over time-scales comparable to their age. Using the GJ-876 system as an example, we analyse the chaotic diffusion of the outermost (and less massive) planet. We construct a set of stability maps in the surrounding regions of the Laplace resonance. We numerically integrate ensembles of close initial conditions, compute Poincaŕe maps and estimate the chaotic diffusion present in this system. Our results show that, the Laplace resonance contains two different regions: an inner domain characterized by low chaoticity and slow diffusion, and an outer one displaying larger values of dynamical indicators. In the outer resonant domain, the stochastic borders of the Laplace resonance seem to prevent the complete destruction of the system. We characterize the diffusion for small ensembles along the parameters of the outermost planet. Finally, we perform a stability analysis of the inherent chaotic, albeit stable Laplace resonance, by linking the behaviour of the resonant variables of the configurations to the different sub-structures inside the three-body resonance.
Instituto de Astrofísica de La Plata
Facultad de Ciencias Astronómicas y Geofísicas - Materia
-
Astronomía
chaos
diffusion
methods: numerical
celestial mechanics
planets and satellites: dynamical evolution and stability
planets and satellites: formation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/93566
Ver los metadatos del registro completo
id |
SEDICI_2d49c45d29637cfef0c0c42accbe3ad4 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/93566 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Chaotic diffusion in the Gliese-876 planetary systemMartí, Javier GuillermoCincotta, Pablo MiguelBeaugé, CristianAstronomíachaosdiffusionmethods: numericalcelestial mechanicsplanets and satellites: dynamical evolution and stabilityplanets and satellites: formationChaotic diffusion is supposed to be responsible for orbital instabilities in planetary systems after the dissipation of the protoplanetary disc, and a natural consequence of irregular motion. In this paper, we show that resonant multiplanetary systems, despite being highly chaotic, not necessarily exhibit significant diffusion in phase space, and may still survive virtually unchanged over time-scales comparable to their age. Using the GJ-876 system as an example, we analyse the chaotic diffusion of the outermost (and less massive) planet. We construct a set of stability maps in the surrounding regions of the Laplace resonance. We numerically integrate ensembles of close initial conditions, compute Poincaŕe maps and estimate the chaotic diffusion present in this system. Our results show that, the Laplace resonance contains two different regions: an inner domain characterized by low chaoticity and slow diffusion, and an outer one displaying larger values of dynamical indicators. In the outer resonant domain, the stochastic borders of the Laplace resonance seem to prevent the complete destruction of the system. We characterize the diffusion for small ensembles along the parameters of the outermost planet. Finally, we perform a stability analysis of the inherent chaotic, albeit stable Laplace resonance, by linking the behaviour of the resonant variables of the configurations to the different sub-structures inside the three-body resonance.Instituto de Astrofísica de La PlataFacultad de Ciencias Astronómicas y Geofísicas2016-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf1094-1105http://sedici.unlp.edu.ar/handle/10915/93566enginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/mnras/article-abstract/460/1/1094/2608834?redirectedFrom=fulltextinfo:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/handle/11336/37343info:eu-repo/semantics/altIdentifier/issn/0035-8711info:eu-repo/semantics/altIdentifier/doi/10.1093/mnras/stw1035info:eu-repo/semantics/altIdentifier/hdl/11336/37343info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-10T12:22:06Zoai:sedici.unlp.edu.ar:10915/93566Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-10 12:22:06.309SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Chaotic diffusion in the Gliese-876 planetary system |
title |
Chaotic diffusion in the Gliese-876 planetary system |
spellingShingle |
Chaotic diffusion in the Gliese-876 planetary system Martí, Javier Guillermo Astronomía chaos diffusion methods: numerical celestial mechanics planets and satellites: dynamical evolution and stability planets and satellites: formation |
title_short |
Chaotic diffusion in the Gliese-876 planetary system |
title_full |
Chaotic diffusion in the Gliese-876 planetary system |
title_fullStr |
Chaotic diffusion in the Gliese-876 planetary system |
title_full_unstemmed |
Chaotic diffusion in the Gliese-876 planetary system |
title_sort |
Chaotic diffusion in the Gliese-876 planetary system |
dc.creator.none.fl_str_mv |
Martí, Javier Guillermo Cincotta, Pablo Miguel Beaugé, Cristian |
author |
Martí, Javier Guillermo |
author_facet |
Martí, Javier Guillermo Cincotta, Pablo Miguel Beaugé, Cristian |
author_role |
author |
author2 |
Cincotta, Pablo Miguel Beaugé, Cristian |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Astronomía chaos diffusion methods: numerical celestial mechanics planets and satellites: dynamical evolution and stability planets and satellites: formation |
topic |
Astronomía chaos diffusion methods: numerical celestial mechanics planets and satellites: dynamical evolution and stability planets and satellites: formation |
dc.description.none.fl_txt_mv |
Chaotic diffusion is supposed to be responsible for orbital instabilities in planetary systems after the dissipation of the protoplanetary disc, and a natural consequence of irregular motion. In this paper, we show that resonant multiplanetary systems, despite being highly chaotic, not necessarily exhibit significant diffusion in phase space, and may still survive virtually unchanged over time-scales comparable to their age. Using the GJ-876 system as an example, we analyse the chaotic diffusion of the outermost (and less massive) planet. We construct a set of stability maps in the surrounding regions of the Laplace resonance. We numerically integrate ensembles of close initial conditions, compute Poincaŕe maps and estimate the chaotic diffusion present in this system. Our results show that, the Laplace resonance contains two different regions: an inner domain characterized by low chaoticity and slow diffusion, and an outer one displaying larger values of dynamical indicators. In the outer resonant domain, the stochastic borders of the Laplace resonance seem to prevent the complete destruction of the system. We characterize the diffusion for small ensembles along the parameters of the outermost planet. Finally, we perform a stability analysis of the inherent chaotic, albeit stable Laplace resonance, by linking the behaviour of the resonant variables of the configurations to the different sub-structures inside the three-body resonance. Instituto de Astrofísica de La Plata Facultad de Ciencias Astronómicas y Geofísicas |
description |
Chaotic diffusion is supposed to be responsible for orbital instabilities in planetary systems after the dissipation of the protoplanetary disc, and a natural consequence of irregular motion. In this paper, we show that resonant multiplanetary systems, despite being highly chaotic, not necessarily exhibit significant diffusion in phase space, and may still survive virtually unchanged over time-scales comparable to their age. Using the GJ-876 system as an example, we analyse the chaotic diffusion of the outermost (and less massive) planet. We construct a set of stability maps in the surrounding regions of the Laplace resonance. We numerically integrate ensembles of close initial conditions, compute Poincaŕe maps and estimate the chaotic diffusion present in this system. Our results show that, the Laplace resonance contains two different regions: an inner domain characterized by low chaoticity and slow diffusion, and an outer one displaying larger values of dynamical indicators. In the outer resonant domain, the stochastic borders of the Laplace resonance seem to prevent the complete destruction of the system. We characterize the diffusion for small ensembles along the parameters of the outermost planet. Finally, we perform a stability analysis of the inherent chaotic, albeit stable Laplace resonance, by linking the behaviour of the resonant variables of the configurations to the different sub-structures inside the three-body resonance. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/93566 |
url |
http://sedici.unlp.edu.ar/handle/10915/93566 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/mnras/article-abstract/460/1/1094/2608834?redirectedFrom=fulltext info:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/handle/11336/37343 info:eu-repo/semantics/altIdentifier/issn/0035-8711 info:eu-repo/semantics/altIdentifier/doi/10.1093/mnras/stw1035 info:eu-repo/semantics/altIdentifier/hdl/11336/37343 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 1094-1105 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842904234832429056 |
score |
12.993085 |