Chaotic diffusion in the Gliese-876 planetary system

Autores
Martí, Javier Guillermo; Cincotta, Pablo Miguel; Beaugé, Cristian
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Chaotic diffusion is supposed to be responsible for orbital instabilities in planetary systems after the dissipation of the protoplanetary disc, and a natural consequence of irregular motion. In this paper, we show that resonant multiplanetary systems, despite being highly chaotic, not necessarily exhibit significant diffusion in phase space, and may still survive virtually unchanged over time-scales comparable to their age. Using the GJ-876 system as an example, we analyse the chaotic diffusion of the outermost (and less massive) planet. We construct a set of stability maps in the surrounding regions of the Laplace resonance. We numerically integrate ensembles of close initial conditions, compute Poincaŕe maps and estimate the chaotic diffusion present in this system. Our results show that, the Laplace resonance contains two different regions: an inner domain characterized by low chaoticity and slow diffusion, and an outer one displaying larger values of dynamical indicators. In the outer resonant domain, the stochastic borders of the Laplace resonance seem to prevent the complete destruction of the system. We characterize the diffusion for small ensembles along the parameters of the outermost planet. Finally, we perform a stability analysis of the inherent chaotic, albeit stable Laplace resonance, by linking the behaviour of the resonant variables of the configurations to the different sub-structures inside the three-body resonance.
Instituto de Astrofísica de La Plata
Facultad de Ciencias Astronómicas y Geofísicas
Materia
Astronomía
chaos
diffusion
methods: numerical
celestial mechanics
planets and satellites: dynamical evolution and stability
planets and satellites: formation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/93566

id SEDICI_2d49c45d29637cfef0c0c42accbe3ad4
oai_identifier_str oai:sedici.unlp.edu.ar:10915/93566
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Chaotic diffusion in the Gliese-876 planetary systemMartí, Javier GuillermoCincotta, Pablo MiguelBeaugé, CristianAstronomíachaosdiffusionmethods: numericalcelestial mechanicsplanets and satellites: dynamical evolution and stabilityplanets and satellites: formationChaotic diffusion is supposed to be responsible for orbital instabilities in planetary systems after the dissipation of the protoplanetary disc, and a natural consequence of irregular motion. In this paper, we show that resonant multiplanetary systems, despite being highly chaotic, not necessarily exhibit significant diffusion in phase space, and may still survive virtually unchanged over time-scales comparable to their age. Using the GJ-876 system as an example, we analyse the chaotic diffusion of the outermost (and less massive) planet. We construct a set of stability maps in the surrounding regions of the Laplace resonance. We numerically integrate ensembles of close initial conditions, compute Poincaŕe maps and estimate the chaotic diffusion present in this system. Our results show that, the Laplace resonance contains two different regions: an inner domain characterized by low chaoticity and slow diffusion, and an outer one displaying larger values of dynamical indicators. In the outer resonant domain, the stochastic borders of the Laplace resonance seem to prevent the complete destruction of the system. We characterize the diffusion for small ensembles along the parameters of the outermost planet. Finally, we perform a stability analysis of the inherent chaotic, albeit stable Laplace resonance, by linking the behaviour of the resonant variables of the configurations to the different sub-structures inside the three-body resonance.Instituto de Astrofísica de La PlataFacultad de Ciencias Astronómicas y Geofísicas2016-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf1094-1105http://sedici.unlp.edu.ar/handle/10915/93566enginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/mnras/article-abstract/460/1/1094/2608834?redirectedFrom=fulltextinfo:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/handle/11336/37343info:eu-repo/semantics/altIdentifier/issn/0035-8711info:eu-repo/semantics/altIdentifier/doi/10.1093/mnras/stw1035info:eu-repo/semantics/altIdentifier/hdl/11336/37343info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-10T12:22:06Zoai:sedici.unlp.edu.ar:10915/93566Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-10 12:22:06.309SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Chaotic diffusion in the Gliese-876 planetary system
title Chaotic diffusion in the Gliese-876 planetary system
spellingShingle Chaotic diffusion in the Gliese-876 planetary system
Martí, Javier Guillermo
Astronomía
chaos
diffusion
methods: numerical
celestial mechanics
planets and satellites: dynamical evolution and stability
planets and satellites: formation
title_short Chaotic diffusion in the Gliese-876 planetary system
title_full Chaotic diffusion in the Gliese-876 planetary system
title_fullStr Chaotic diffusion in the Gliese-876 planetary system
title_full_unstemmed Chaotic diffusion in the Gliese-876 planetary system
title_sort Chaotic diffusion in the Gliese-876 planetary system
dc.creator.none.fl_str_mv Martí, Javier Guillermo
Cincotta, Pablo Miguel
Beaugé, Cristian
author Martí, Javier Guillermo
author_facet Martí, Javier Guillermo
Cincotta, Pablo Miguel
Beaugé, Cristian
author_role author
author2 Cincotta, Pablo Miguel
Beaugé, Cristian
author2_role author
author
dc.subject.none.fl_str_mv Astronomía
chaos
diffusion
methods: numerical
celestial mechanics
planets and satellites: dynamical evolution and stability
planets and satellites: formation
topic Astronomía
chaos
diffusion
methods: numerical
celestial mechanics
planets and satellites: dynamical evolution and stability
planets and satellites: formation
dc.description.none.fl_txt_mv Chaotic diffusion is supposed to be responsible for orbital instabilities in planetary systems after the dissipation of the protoplanetary disc, and a natural consequence of irregular motion. In this paper, we show that resonant multiplanetary systems, despite being highly chaotic, not necessarily exhibit significant diffusion in phase space, and may still survive virtually unchanged over time-scales comparable to their age. Using the GJ-876 system as an example, we analyse the chaotic diffusion of the outermost (and less massive) planet. We construct a set of stability maps in the surrounding regions of the Laplace resonance. We numerically integrate ensembles of close initial conditions, compute Poincaŕe maps and estimate the chaotic diffusion present in this system. Our results show that, the Laplace resonance contains two different regions: an inner domain characterized by low chaoticity and slow diffusion, and an outer one displaying larger values of dynamical indicators. In the outer resonant domain, the stochastic borders of the Laplace resonance seem to prevent the complete destruction of the system. We characterize the diffusion for small ensembles along the parameters of the outermost planet. Finally, we perform a stability analysis of the inherent chaotic, albeit stable Laplace resonance, by linking the behaviour of the resonant variables of the configurations to the different sub-structures inside the three-body resonance.
Instituto de Astrofísica de La Plata
Facultad de Ciencias Astronómicas y Geofísicas
description Chaotic diffusion is supposed to be responsible for orbital instabilities in planetary systems after the dissipation of the protoplanetary disc, and a natural consequence of irregular motion. In this paper, we show that resonant multiplanetary systems, despite being highly chaotic, not necessarily exhibit significant diffusion in phase space, and may still survive virtually unchanged over time-scales comparable to their age. Using the GJ-876 system as an example, we analyse the chaotic diffusion of the outermost (and less massive) planet. We construct a set of stability maps in the surrounding regions of the Laplace resonance. We numerically integrate ensembles of close initial conditions, compute Poincaŕe maps and estimate the chaotic diffusion present in this system. Our results show that, the Laplace resonance contains two different regions: an inner domain characterized by low chaoticity and slow diffusion, and an outer one displaying larger values of dynamical indicators. In the outer resonant domain, the stochastic borders of the Laplace resonance seem to prevent the complete destruction of the system. We characterize the diffusion for small ensembles along the parameters of the outermost planet. Finally, we perform a stability analysis of the inherent chaotic, albeit stable Laplace resonance, by linking the behaviour of the resonant variables of the configurations to the different sub-structures inside the three-body resonance.
publishDate 2016
dc.date.none.fl_str_mv 2016-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/93566
url http://sedici.unlp.edu.ar/handle/10915/93566
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/mnras/article-abstract/460/1/1094/2608834?redirectedFrom=fulltext
info:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/handle/11336/37343
info:eu-repo/semantics/altIdentifier/issn/0035-8711
info:eu-repo/semantics/altIdentifier/doi/10.1093/mnras/stw1035
info:eu-repo/semantics/altIdentifier/hdl/11336/37343
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
1094-1105
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842904234832429056
score 12.993085