Robust Nonlinear Control for Synchronising and Regulating Neural Activity
- Autores
- Martinez, Sebastian; Sanchez Peña, Ricardo Salvador; García Violini, Diego Demián
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Modulating neural activity in a systematic manner holds significant potential for advancing the understanding of brain functions and improving therapeutic strategies. To forecast the dynamics behind several brain activities, numerous neurobiological models have been developed, targeting both individual neurons and entire neural populations. In this context, control systems emerge as powerful tools for effectively linking inputs, such as neural stimuli, to measurable outputs. This study introduces a control framework aimed at regulating neural-mass activity, which has promising applications in pattern tracking, including rhythm generation and phase synchronisation. Given the strong connection of these mechanisms to real brain computations, the presented approach offers biologically relevant insights. To demonstrate this, the Wilson-Cowan model is used, in which stimuli are delivered via light signals to genetically engineered neurons expressing light-sensitive actuators. This proof of concept provides a foundation for future experimental applications in neurobiological systems control. Furthermore, building on previous results, this work integrates opsin dynamics, of the channelrhodopsin and halorhodopsin-type, to accurately model the optogenetic activation channels, enhancing the description of the actuation process.
Fil: Martinez, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Tecnológico de Buenos Aires; Argentina
Fil: Sanchez Peña, Ricardo Salvador. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: García Violini, Diego Demián. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
WILSON-COWAN
ROBUST CONTROL
CLOSED LOOP
OPTOGENETICS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/262766
Ver los metadatos del registro completo
id |
CONICETDig_302bedfbb162801e8a481e55130413b4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/262766 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Robust Nonlinear Control for Synchronising and Regulating Neural ActivityMartinez, SebastianSanchez Peña, Ricardo SalvadorGarcía Violini, Diego DemiánWILSON-COWANROBUST CONTROLCLOSED LOOPOPTOGENETICShttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Modulating neural activity in a systematic manner holds significant potential for advancing the understanding of brain functions and improving therapeutic strategies. To forecast the dynamics behind several brain activities, numerous neurobiological models have been developed, targeting both individual neurons and entire neural populations. In this context, control systems emerge as powerful tools for effectively linking inputs, such as neural stimuli, to measurable outputs. This study introduces a control framework aimed at regulating neural-mass activity, which has promising applications in pattern tracking, including rhythm generation and phase synchronisation. Given the strong connection of these mechanisms to real brain computations, the presented approach offers biologically relevant insights. To demonstrate this, the Wilson-Cowan model is used, in which stimuli are delivered via light signals to genetically engineered neurons expressing light-sensitive actuators. This proof of concept provides a foundation for future experimental applications in neurobiological systems control. Furthermore, building on previous results, this work integrates opsin dynamics, of the channelrhodopsin and halorhodopsin-type, to accurately model the optogenetic activation channels, enhancing the description of the actuation process.Fil: Martinez, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Tecnológico de Buenos Aires; ArgentinaFil: Sanchez Peña, Ricardo Salvador. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: García Violini, Diego Demián. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaUniversal Wiser Publisher2025-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/262766Martinez, Sebastian; Sanchez Peña, Ricardo Salvador; García Violini, Diego Demián; Robust Nonlinear Control for Synchronising and Regulating Neural Activity; Universal Wiser Publisher; Journal of Electronics and Electrical Engineering; 4; 1-2025; 60-792972-3280CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ojs.wiserpub.com/index.php/JEEE/article/view/5834info:eu-repo/semantics/altIdentifier/doi/10.37256/jeee.4120255834info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:32:58Zoai:ri.conicet.gov.ar:11336/262766instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:32:59.142CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Robust Nonlinear Control for Synchronising and Regulating Neural Activity |
title |
Robust Nonlinear Control for Synchronising and Regulating Neural Activity |
spellingShingle |
Robust Nonlinear Control for Synchronising and Regulating Neural Activity Martinez, Sebastian WILSON-COWAN ROBUST CONTROL CLOSED LOOP OPTOGENETICS |
title_short |
Robust Nonlinear Control for Synchronising and Regulating Neural Activity |
title_full |
Robust Nonlinear Control for Synchronising and Regulating Neural Activity |
title_fullStr |
Robust Nonlinear Control for Synchronising and Regulating Neural Activity |
title_full_unstemmed |
Robust Nonlinear Control for Synchronising and Regulating Neural Activity |
title_sort |
Robust Nonlinear Control for Synchronising and Regulating Neural Activity |
dc.creator.none.fl_str_mv |
Martinez, Sebastian Sanchez Peña, Ricardo Salvador García Violini, Diego Demián |
author |
Martinez, Sebastian |
author_facet |
Martinez, Sebastian Sanchez Peña, Ricardo Salvador García Violini, Diego Demián |
author_role |
author |
author2 |
Sanchez Peña, Ricardo Salvador García Violini, Diego Demián |
author2_role |
author author |
dc.subject.none.fl_str_mv |
WILSON-COWAN ROBUST CONTROL CLOSED LOOP OPTOGENETICS |
topic |
WILSON-COWAN ROBUST CONTROL CLOSED LOOP OPTOGENETICS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Modulating neural activity in a systematic manner holds significant potential for advancing the understanding of brain functions and improving therapeutic strategies. To forecast the dynamics behind several brain activities, numerous neurobiological models have been developed, targeting both individual neurons and entire neural populations. In this context, control systems emerge as powerful tools for effectively linking inputs, such as neural stimuli, to measurable outputs. This study introduces a control framework aimed at regulating neural-mass activity, which has promising applications in pattern tracking, including rhythm generation and phase synchronisation. Given the strong connection of these mechanisms to real brain computations, the presented approach offers biologically relevant insights. To demonstrate this, the Wilson-Cowan model is used, in which stimuli are delivered via light signals to genetically engineered neurons expressing light-sensitive actuators. This proof of concept provides a foundation for future experimental applications in neurobiological systems control. Furthermore, building on previous results, this work integrates opsin dynamics, of the channelrhodopsin and halorhodopsin-type, to accurately model the optogenetic activation channels, enhancing the description of the actuation process. Fil: Martinez, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Tecnológico de Buenos Aires; Argentina Fil: Sanchez Peña, Ricardo Salvador. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: García Violini, Diego Demián. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Modulating neural activity in a systematic manner holds significant potential for advancing the understanding of brain functions and improving therapeutic strategies. To forecast the dynamics behind several brain activities, numerous neurobiological models have been developed, targeting both individual neurons and entire neural populations. In this context, control systems emerge as powerful tools for effectively linking inputs, such as neural stimuli, to measurable outputs. This study introduces a control framework aimed at regulating neural-mass activity, which has promising applications in pattern tracking, including rhythm generation and phase synchronisation. Given the strong connection of these mechanisms to real brain computations, the presented approach offers biologically relevant insights. To demonstrate this, the Wilson-Cowan model is used, in which stimuli are delivered via light signals to genetically engineered neurons expressing light-sensitive actuators. This proof of concept provides a foundation for future experimental applications in neurobiological systems control. Furthermore, building on previous results, this work integrates opsin dynamics, of the channelrhodopsin and halorhodopsin-type, to accurately model the optogenetic activation channels, enhancing the description of the actuation process. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/262766 Martinez, Sebastian; Sanchez Peña, Ricardo Salvador; García Violini, Diego Demián; Robust Nonlinear Control for Synchronising and Regulating Neural Activity; Universal Wiser Publisher; Journal of Electronics and Electrical Engineering; 4; 1-2025; 60-79 2972-3280 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/262766 |
identifier_str_mv |
Martinez, Sebastian; Sanchez Peña, Ricardo Salvador; García Violini, Diego Demián; Robust Nonlinear Control for Synchronising and Regulating Neural Activity; Universal Wiser Publisher; Journal of Electronics and Electrical Engineering; 4; 1-2025; 60-79 2972-3280 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ojs.wiserpub.com/index.php/JEEE/article/view/5834 info:eu-repo/semantics/altIdentifier/doi/10.37256/jeee.4120255834 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universal Wiser Publisher |
publisher.none.fl_str_mv |
Universal Wiser Publisher |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614344460992512 |
score |
13.070432 |