Fast and Efficient Food Quality Control Using Electronic Noses: Adulteration Detection Achieved by Unfolded Cluster Analysis Coupled with Time-Window Selection
- Autores
- Rodríguez, Silvio David; Barletta, Diego A.; Wilderjans, Tom F.; Bernik, Delia Leticia
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The objective of this work is to report the improvements obtained in the discrimination of complex aroma samples with subtle differences in odor pattern, by the use of a fast procedure suitable for the cases of measurements in the field demanding decision-making in real time using a portable electronic nose. This device consists of a sensor array which records changes in conductivity as a function of time when aroma molecules reach the sensors. The core of the method consists of applying unfolded cluster analysis to selected time windows (UCATW) within the temporal evolution of the aroma profile recorded by the gas sensors, yielding an efficient, fast, and reliable data analysis tool that is easy to perform for electronic nose users. The performance of this data handling was tested in two case studies of food adulteration. The results demonstrated that this methodology enables to discriminate highly similar samples, herewith reducing the probability of achieving a wrong grouping due to the use of flawed data. The automation of this type of analysis is simple and improves the efficiency of the device significantly, herewith reducing the time of sensor’s signal recording that is necessary for a reliable assessment of the studied system. The results were validated by clustering the sample component scores that are obtained by applying parallel factor analysis (PARAFAC) to the original three-dimensional data array. An additional validation was obtained by means of a leave-one-out resampling procedure.
Fil: Rodríguez, Silvio David. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Barletta, Diego A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Wilderjans, Tom F.. Katholieke Universiteit Leuve; Bélgica
Fil: Bernik, Delia Leticia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina - Materia
-
Aroma Discrimination
Electronic Nose
Food Quality Assessment
Time-Window Selection
Unfolded Cluster Analysis - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/83675
Ver los metadatos del registro completo
| id |
CONICETDig_2f9207ecbb31a7c2927f44147d408a52 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/83675 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Fast and Efficient Food Quality Control Using Electronic Noses: Adulteration Detection Achieved by Unfolded Cluster Analysis Coupled with Time-Window SelectionRodríguez, Silvio DavidBarletta, Diego A.Wilderjans, Tom F.Bernik, Delia LeticiaAroma DiscriminationElectronic NoseFood Quality AssessmentTime-Window SelectionUnfolded Cluster Analysishttps://purl.org/becyt/ford/1.7https://purl.org/becyt/ford/1The objective of this work is to report the improvements obtained in the discrimination of complex aroma samples with subtle differences in odor pattern, by the use of a fast procedure suitable for the cases of measurements in the field demanding decision-making in real time using a portable electronic nose. This device consists of a sensor array which records changes in conductivity as a function of time when aroma molecules reach the sensors. The core of the method consists of applying unfolded cluster analysis to selected time windows (UCATW) within the temporal evolution of the aroma profile recorded by the gas sensors, yielding an efficient, fast, and reliable data analysis tool that is easy to perform for electronic nose users. The performance of this data handling was tested in two case studies of food adulteration. The results demonstrated that this methodology enables to discriminate highly similar samples, herewith reducing the probability of achieving a wrong grouping due to the use of flawed data. The automation of this type of analysis is simple and improves the efficiency of the device significantly, herewith reducing the time of sensor’s signal recording that is necessary for a reliable assessment of the studied system. The results were validated by clustering the sample component scores that are obtained by applying parallel factor analysis (PARAFAC) to the original three-dimensional data array. An additional validation was obtained by means of a leave-one-out resampling procedure.Fil: Rodríguez, Silvio David. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Barletta, Diego A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Wilderjans, Tom F.. Katholieke Universiteit Leuve; BélgicaFil: Bernik, Delia Leticia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaSpringer2014-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/83675Rodríguez, Silvio David; Barletta, Diego A.; Wilderjans, Tom F.; Bernik, Delia Leticia; Fast and Efficient Food Quality Control Using Electronic Noses: Adulteration Detection Achieved by Unfolded Cluster Analysis Coupled with Time-Window Selection; Springer; Food Analytical Methods; 7; 10; 10-2014; 2042-20501936-9751CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s12161-014-9841-7info:eu-repo/semantics/altIdentifier/doi/10.1007/s12161-014-9841-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:36:29Zoai:ri.conicet.gov.ar:11336/83675instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:36:29.516CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Fast and Efficient Food Quality Control Using Electronic Noses: Adulteration Detection Achieved by Unfolded Cluster Analysis Coupled with Time-Window Selection |
| title |
Fast and Efficient Food Quality Control Using Electronic Noses: Adulteration Detection Achieved by Unfolded Cluster Analysis Coupled with Time-Window Selection |
| spellingShingle |
Fast and Efficient Food Quality Control Using Electronic Noses: Adulteration Detection Achieved by Unfolded Cluster Analysis Coupled with Time-Window Selection Rodríguez, Silvio David Aroma Discrimination Electronic Nose Food Quality Assessment Time-Window Selection Unfolded Cluster Analysis |
| title_short |
Fast and Efficient Food Quality Control Using Electronic Noses: Adulteration Detection Achieved by Unfolded Cluster Analysis Coupled with Time-Window Selection |
| title_full |
Fast and Efficient Food Quality Control Using Electronic Noses: Adulteration Detection Achieved by Unfolded Cluster Analysis Coupled with Time-Window Selection |
| title_fullStr |
Fast and Efficient Food Quality Control Using Electronic Noses: Adulteration Detection Achieved by Unfolded Cluster Analysis Coupled with Time-Window Selection |
| title_full_unstemmed |
Fast and Efficient Food Quality Control Using Electronic Noses: Adulteration Detection Achieved by Unfolded Cluster Analysis Coupled with Time-Window Selection |
| title_sort |
Fast and Efficient Food Quality Control Using Electronic Noses: Adulteration Detection Achieved by Unfolded Cluster Analysis Coupled with Time-Window Selection |
| dc.creator.none.fl_str_mv |
Rodríguez, Silvio David Barletta, Diego A. Wilderjans, Tom F. Bernik, Delia Leticia |
| author |
Rodríguez, Silvio David |
| author_facet |
Rodríguez, Silvio David Barletta, Diego A. Wilderjans, Tom F. Bernik, Delia Leticia |
| author_role |
author |
| author2 |
Barletta, Diego A. Wilderjans, Tom F. Bernik, Delia Leticia |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Aroma Discrimination Electronic Nose Food Quality Assessment Time-Window Selection Unfolded Cluster Analysis |
| topic |
Aroma Discrimination Electronic Nose Food Quality Assessment Time-Window Selection Unfolded Cluster Analysis |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.7 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
The objective of this work is to report the improvements obtained in the discrimination of complex aroma samples with subtle differences in odor pattern, by the use of a fast procedure suitable for the cases of measurements in the field demanding decision-making in real time using a portable electronic nose. This device consists of a sensor array which records changes in conductivity as a function of time when aroma molecules reach the sensors. The core of the method consists of applying unfolded cluster analysis to selected time windows (UCATW) within the temporal evolution of the aroma profile recorded by the gas sensors, yielding an efficient, fast, and reliable data analysis tool that is easy to perform for electronic nose users. The performance of this data handling was tested in two case studies of food adulteration. The results demonstrated that this methodology enables to discriminate highly similar samples, herewith reducing the probability of achieving a wrong grouping due to the use of flawed data. The automation of this type of analysis is simple and improves the efficiency of the device significantly, herewith reducing the time of sensor’s signal recording that is necessary for a reliable assessment of the studied system. The results were validated by clustering the sample component scores that are obtained by applying parallel factor analysis (PARAFAC) to the original three-dimensional data array. An additional validation was obtained by means of a leave-one-out resampling procedure. Fil: Rodríguez, Silvio David. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Barletta, Diego A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Wilderjans, Tom F.. Katholieke Universiteit Leuve; Bélgica Fil: Bernik, Delia Leticia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina |
| description |
The objective of this work is to report the improvements obtained in the discrimination of complex aroma samples with subtle differences in odor pattern, by the use of a fast procedure suitable for the cases of measurements in the field demanding decision-making in real time using a portable electronic nose. This device consists of a sensor array which records changes in conductivity as a function of time when aroma molecules reach the sensors. The core of the method consists of applying unfolded cluster analysis to selected time windows (UCATW) within the temporal evolution of the aroma profile recorded by the gas sensors, yielding an efficient, fast, and reliable data analysis tool that is easy to perform for electronic nose users. The performance of this data handling was tested in two case studies of food adulteration. The results demonstrated that this methodology enables to discriminate highly similar samples, herewith reducing the probability of achieving a wrong grouping due to the use of flawed data. The automation of this type of analysis is simple and improves the efficiency of the device significantly, herewith reducing the time of sensor’s signal recording that is necessary for a reliable assessment of the studied system. The results were validated by clustering the sample component scores that are obtained by applying parallel factor analysis (PARAFAC) to the original three-dimensional data array. An additional validation was obtained by means of a leave-one-out resampling procedure. |
| publishDate |
2014 |
| dc.date.none.fl_str_mv |
2014-10 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/83675 Rodríguez, Silvio David; Barletta, Diego A.; Wilderjans, Tom F.; Bernik, Delia Leticia; Fast and Efficient Food Quality Control Using Electronic Noses: Adulteration Detection Achieved by Unfolded Cluster Analysis Coupled with Time-Window Selection; Springer; Food Analytical Methods; 7; 10; 10-2014; 2042-2050 1936-9751 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/83675 |
| identifier_str_mv |
Rodríguez, Silvio David; Barletta, Diego A.; Wilderjans, Tom F.; Bernik, Delia Leticia; Fast and Efficient Food Quality Control Using Electronic Noses: Adulteration Detection Achieved by Unfolded Cluster Analysis Coupled with Time-Window Selection; Springer; Food Analytical Methods; 7; 10; 10-2014; 2042-2050 1936-9751 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s12161-014-9841-7 info:eu-repo/semantics/altIdentifier/doi/10.1007/s12161-014-9841-7 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848597257464578048 |
| score |
13.24909 |