Transient effectiveness factors in the dynamic analysis of heterogeneous reactors with porous catalyst particles

Autores
Bidabehere, Claudia María; García, Juan Rafael; Sedran, Ulises Anselmo
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A model to calculate the actual transient effectiveness factor in spherical porous catalyst particles in gradientless reactors, where a first order reaction takes place under isothermal conditions, linear equilibrium adsorption and intraparticle diffusion control, was developed. After a certain time has elapsed following a change in the feed׳s reactant concentration, the transient effectiveness factor can be approximated as a linear combination of the steady state effectiveness factor and the relative rate of change of the concentration in the fluid phase. Oppositely to the well-known steady state effectiveness factor, which depends only on the Thiele modulus ϕ, related to intrinsic properties of the catalysts, the transient effectiveness factor also depends on other two dimensionless numbers: α, the relationship between the capacity of accumulation of reactant in the fluid and solid phases, and ϕf, a relationship between the convective flow and the intraparticle diffusion rate. In this way, the catalyst load, the reactor volume and the volumetric flow do impact on the effectiveness factor. The coefficients defined as Ia and If are the Diffusion–Adsorption–Reaction Factor and the Flow Factor, respectively, which are complex functions of the Thiele modulus, the convective modulus ϕf and the system׳s adsorption capacity α, and which can be used to correct the steady state effectiveness factor to yield the approximated transient effectiveness factor, which is more exact. In the case of a pulse perturbation in the reactant׳s concentration, the transient effectiveness factor reaches a constant value which is larger than that from the steady state effectiveness factor and, the larger the catalyst mass and the flow, the larger the difference. Results show the existence of a pseudo-equilibrium state in gradientless reactors.
Fil: Bidabehere, Claudia María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: García, Juan Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; Argentina
Fil: Sedran, Ulises Anselmo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; Argentina
Materia
Transient Effectiveness Factor
Diffusion-Adsorption-Reaction
Porous Catalysts
Reactor Dynamics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/34986

id CONICETDig_2f83797da5b8696888a0502451accda7
oai_identifier_str oai:ri.conicet.gov.ar:11336/34986
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Transient effectiveness factors in the dynamic analysis of heterogeneous reactors with porous catalyst particlesBidabehere, Claudia MaríaGarcía, Juan RafaelSedran, Ulises AnselmoTransient Effectiveness FactorDiffusion-Adsorption-ReactionPorous CatalystsReactor Dynamicshttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2A model to calculate the actual transient effectiveness factor in spherical porous catalyst particles in gradientless reactors, where a first order reaction takes place under isothermal conditions, linear equilibrium adsorption and intraparticle diffusion control, was developed. After a certain time has elapsed following a change in the feed׳s reactant concentration, the transient effectiveness factor can be approximated as a linear combination of the steady state effectiveness factor and the relative rate of change of the concentration in the fluid phase. Oppositely to the well-known steady state effectiveness factor, which depends only on the Thiele modulus ϕ, related to intrinsic properties of the catalysts, the transient effectiveness factor also depends on other two dimensionless numbers: α, the relationship between the capacity of accumulation of reactant in the fluid and solid phases, and ϕf, a relationship between the convective flow and the intraparticle diffusion rate. In this way, the catalyst load, the reactor volume and the volumetric flow do impact on the effectiveness factor. The coefficients defined as Ia and If are the Diffusion–Adsorption–Reaction Factor and the Flow Factor, respectively, which are complex functions of the Thiele modulus, the convective modulus ϕf and the system׳s adsorption capacity α, and which can be used to correct the steady state effectiveness factor to yield the approximated transient effectiveness factor, which is more exact. In the case of a pulse perturbation in the reactant׳s concentration, the transient effectiveness factor reaches a constant value which is larger than that from the steady state effectiveness factor and, the larger the catalyst mass and the flow, the larger the difference. Results show the existence of a pseudo-equilibrium state in gradientless reactors.Fil: Bidabehere, Claudia María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: García, Juan Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; ArgentinaFil: Sedran, Ulises Anselmo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; ArgentinaElsevier2015-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/34986Bidabehere, Claudia María; García, Juan Rafael; Sedran, Ulises Anselmo; Transient effectiveness factors in the dynamic analysis of heterogeneous reactors with porous catalyst particles; Elsevier; Chemical Engineering Science; 137; 12-2015; 293-3000009-2509CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ces.2015.06.041info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0009250915004492?via%3Dihubinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:49:41Zoai:ri.conicet.gov.ar:11336/34986instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:49:42.097CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Transient effectiveness factors in the dynamic analysis of heterogeneous reactors with porous catalyst particles
title Transient effectiveness factors in the dynamic analysis of heterogeneous reactors with porous catalyst particles
spellingShingle Transient effectiveness factors in the dynamic analysis of heterogeneous reactors with porous catalyst particles
Bidabehere, Claudia María
Transient Effectiveness Factor
Diffusion-Adsorption-Reaction
Porous Catalysts
Reactor Dynamics
title_short Transient effectiveness factors in the dynamic analysis of heterogeneous reactors with porous catalyst particles
title_full Transient effectiveness factors in the dynamic analysis of heterogeneous reactors with porous catalyst particles
title_fullStr Transient effectiveness factors in the dynamic analysis of heterogeneous reactors with porous catalyst particles
title_full_unstemmed Transient effectiveness factors in the dynamic analysis of heterogeneous reactors with porous catalyst particles
title_sort Transient effectiveness factors in the dynamic analysis of heterogeneous reactors with porous catalyst particles
dc.creator.none.fl_str_mv Bidabehere, Claudia María
García, Juan Rafael
Sedran, Ulises Anselmo
author Bidabehere, Claudia María
author_facet Bidabehere, Claudia María
García, Juan Rafael
Sedran, Ulises Anselmo
author_role author
author2 García, Juan Rafael
Sedran, Ulises Anselmo
author2_role author
author
dc.subject.none.fl_str_mv Transient Effectiveness Factor
Diffusion-Adsorption-Reaction
Porous Catalysts
Reactor Dynamics
topic Transient Effectiveness Factor
Diffusion-Adsorption-Reaction
Porous Catalysts
Reactor Dynamics
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv A model to calculate the actual transient effectiveness factor in spherical porous catalyst particles in gradientless reactors, where a first order reaction takes place under isothermal conditions, linear equilibrium adsorption and intraparticle diffusion control, was developed. After a certain time has elapsed following a change in the feed׳s reactant concentration, the transient effectiveness factor can be approximated as a linear combination of the steady state effectiveness factor and the relative rate of change of the concentration in the fluid phase. Oppositely to the well-known steady state effectiveness factor, which depends only on the Thiele modulus ϕ, related to intrinsic properties of the catalysts, the transient effectiveness factor also depends on other two dimensionless numbers: α, the relationship between the capacity of accumulation of reactant in the fluid and solid phases, and ϕf, a relationship between the convective flow and the intraparticle diffusion rate. In this way, the catalyst load, the reactor volume and the volumetric flow do impact on the effectiveness factor. The coefficients defined as Ia and If are the Diffusion–Adsorption–Reaction Factor and the Flow Factor, respectively, which are complex functions of the Thiele modulus, the convective modulus ϕf and the system׳s adsorption capacity α, and which can be used to correct the steady state effectiveness factor to yield the approximated transient effectiveness factor, which is more exact. In the case of a pulse perturbation in the reactant׳s concentration, the transient effectiveness factor reaches a constant value which is larger than that from the steady state effectiveness factor and, the larger the catalyst mass and the flow, the larger the difference. Results show the existence of a pseudo-equilibrium state in gradientless reactors.
Fil: Bidabehere, Claudia María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: García, Juan Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; Argentina
Fil: Sedran, Ulises Anselmo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; Argentina
description A model to calculate the actual transient effectiveness factor in spherical porous catalyst particles in gradientless reactors, where a first order reaction takes place under isothermal conditions, linear equilibrium adsorption and intraparticle diffusion control, was developed. After a certain time has elapsed following a change in the feed׳s reactant concentration, the transient effectiveness factor can be approximated as a linear combination of the steady state effectiveness factor and the relative rate of change of the concentration in the fluid phase. Oppositely to the well-known steady state effectiveness factor, which depends only on the Thiele modulus ϕ, related to intrinsic properties of the catalysts, the transient effectiveness factor also depends on other two dimensionless numbers: α, the relationship between the capacity of accumulation of reactant in the fluid and solid phases, and ϕf, a relationship between the convective flow and the intraparticle diffusion rate. In this way, the catalyst load, the reactor volume and the volumetric flow do impact on the effectiveness factor. The coefficients defined as Ia and If are the Diffusion–Adsorption–Reaction Factor and the Flow Factor, respectively, which are complex functions of the Thiele modulus, the convective modulus ϕf and the system׳s adsorption capacity α, and which can be used to correct the steady state effectiveness factor to yield the approximated transient effectiveness factor, which is more exact. In the case of a pulse perturbation in the reactant׳s concentration, the transient effectiveness factor reaches a constant value which is larger than that from the steady state effectiveness factor and, the larger the catalyst mass and the flow, the larger the difference. Results show the existence of a pseudo-equilibrium state in gradientless reactors.
publishDate 2015
dc.date.none.fl_str_mv 2015-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/34986
Bidabehere, Claudia María; García, Juan Rafael; Sedran, Ulises Anselmo; Transient effectiveness factors in the dynamic analysis of heterogeneous reactors with porous catalyst particles; Elsevier; Chemical Engineering Science; 137; 12-2015; 293-300
0009-2509
CONICET Digital
CONICET
url http://hdl.handle.net/11336/34986
identifier_str_mv Bidabehere, Claudia María; García, Juan Rafael; Sedran, Ulises Anselmo; Transient effectiveness factors in the dynamic analysis of heterogeneous reactors with porous catalyst particles; Elsevier; Chemical Engineering Science; 137; 12-2015; 293-300
0009-2509
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ces.2015.06.041
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0009250915004492?via%3Dihub
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083020003475456
score 13.22299