Use of stirred batch reactors for the assessment of adsorption constants in porous solid catalysts with simultaneous diffusion and reaction. Theoretical analysis
- Autores
- Bidabehere, Claudia María; Sedran, Ulises Anselmo
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A simple, pseudo-equilibrium model was derived for a catalytic system with a first order chemical reaction and simultaneous diffusive and adsorptive processes, in order to assess the corresponding kinetics and Henry law's-type adsorption parameters. Solutions from this model were compared to exact solutions from a more detailed, general model. It was shown that under most of the experimental conditions used in stirred batch reactors and the usual model considerations, it is only possible to assess apparent adsorption parameters. Also, we observed that a stable relationship between the concentrations in the gas and solid phases is reached. The error produced in assuming that the apparent adsorption constant is the real one was calculated to be very important. The value of the apparent adsorption constant depends on various system properties and experimental conditions, such as the Thiele modulus, the amount of catalyst and the contact time. The ratio between the apparent and real adsorption constants was shown to be the transient effectiveness factor at any moment. This ratio reaches a maximum value for the pseudo-equilibrium state, that is always larger than the steady-state effectiveness factor, becoming closer as long as the system's adsorption capacity decreases. The analysis determines the operative conditions to reduce the parametric correlation. Also a criterion for the applicability of usual approximations in the assessment of kinetics and equilibrium adsorption parameters in porous solid catalysts by means of pulse injection methods is established.
Fil: Bidabehere, Claudia María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Sedran, Ulises Anselmo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; Argentina - Materia
-
Stirred Reactors
Adsorption
Diffusion - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/65318
Ver los metadatos del registro completo
id |
CONICETDig_18428481fc10ad922cc892ad79e150d8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/65318 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Use of stirred batch reactors for the assessment of adsorption constants in porous solid catalysts with simultaneous diffusion and reaction. Theoretical analysisBidabehere, Claudia MaríaSedran, Ulises AnselmoStirred ReactorsAdsorptionDiffusionhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2A simple, pseudo-equilibrium model was derived for a catalytic system with a first order chemical reaction and simultaneous diffusive and adsorptive processes, in order to assess the corresponding kinetics and Henry law's-type adsorption parameters. Solutions from this model were compared to exact solutions from a more detailed, general model. It was shown that under most of the experimental conditions used in stirred batch reactors and the usual model considerations, it is only possible to assess apparent adsorption parameters. Also, we observed that a stable relationship between the concentrations in the gas and solid phases is reached. The error produced in assuming that the apparent adsorption constant is the real one was calculated to be very important. The value of the apparent adsorption constant depends on various system properties and experimental conditions, such as the Thiele modulus, the amount of catalyst and the contact time. The ratio between the apparent and real adsorption constants was shown to be the transient effectiveness factor at any moment. This ratio reaches a maximum value for the pseudo-equilibrium state, that is always larger than the steady-state effectiveness factor, becoming closer as long as the system's adsorption capacity decreases. The analysis determines the operative conditions to reduce the parametric correlation. Also a criterion for the applicability of usual approximations in the assessment of kinetics and equilibrium adsorption parameters in porous solid catalysts by means of pulse injection methods is established.Fil: Bidabehere, Claudia María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Sedran, Ulises Anselmo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; ArgentinaPergamon-Elsevier Science Ltd2006-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/65318Bidabehere, Claudia María; Sedran, Ulises Anselmo; Use of stirred batch reactors for the assessment of adsorption constants in porous solid catalysts with simultaneous diffusion and reaction. Theoretical analysis; Pergamon-Elsevier Science Ltd; Chemical Engineering Science; 61; 6; 3-2006; 2048-20550009-2509CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ces.2005.10.043info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:26:34Zoai:ri.conicet.gov.ar:11336/65318instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:26:35.199CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Use of stirred batch reactors for the assessment of adsorption constants in porous solid catalysts with simultaneous diffusion and reaction. Theoretical analysis |
title |
Use of stirred batch reactors for the assessment of adsorption constants in porous solid catalysts with simultaneous diffusion and reaction. Theoretical analysis |
spellingShingle |
Use of stirred batch reactors for the assessment of adsorption constants in porous solid catalysts with simultaneous diffusion and reaction. Theoretical analysis Bidabehere, Claudia María Stirred Reactors Adsorption Diffusion |
title_short |
Use of stirred batch reactors for the assessment of adsorption constants in porous solid catalysts with simultaneous diffusion and reaction. Theoretical analysis |
title_full |
Use of stirred batch reactors for the assessment of adsorption constants in porous solid catalysts with simultaneous diffusion and reaction. Theoretical analysis |
title_fullStr |
Use of stirred batch reactors for the assessment of adsorption constants in porous solid catalysts with simultaneous diffusion and reaction. Theoretical analysis |
title_full_unstemmed |
Use of stirred batch reactors for the assessment of adsorption constants in porous solid catalysts with simultaneous diffusion and reaction. Theoretical analysis |
title_sort |
Use of stirred batch reactors for the assessment of adsorption constants in porous solid catalysts with simultaneous diffusion and reaction. Theoretical analysis |
dc.creator.none.fl_str_mv |
Bidabehere, Claudia María Sedran, Ulises Anselmo |
author |
Bidabehere, Claudia María |
author_facet |
Bidabehere, Claudia María Sedran, Ulises Anselmo |
author_role |
author |
author2 |
Sedran, Ulises Anselmo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Stirred Reactors Adsorption Diffusion |
topic |
Stirred Reactors Adsorption Diffusion |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
A simple, pseudo-equilibrium model was derived for a catalytic system with a first order chemical reaction and simultaneous diffusive and adsorptive processes, in order to assess the corresponding kinetics and Henry law's-type adsorption parameters. Solutions from this model were compared to exact solutions from a more detailed, general model. It was shown that under most of the experimental conditions used in stirred batch reactors and the usual model considerations, it is only possible to assess apparent adsorption parameters. Also, we observed that a stable relationship between the concentrations in the gas and solid phases is reached. The error produced in assuming that the apparent adsorption constant is the real one was calculated to be very important. The value of the apparent adsorption constant depends on various system properties and experimental conditions, such as the Thiele modulus, the amount of catalyst and the contact time. The ratio between the apparent and real adsorption constants was shown to be the transient effectiveness factor at any moment. This ratio reaches a maximum value for the pseudo-equilibrium state, that is always larger than the steady-state effectiveness factor, becoming closer as long as the system's adsorption capacity decreases. The analysis determines the operative conditions to reduce the parametric correlation. Also a criterion for the applicability of usual approximations in the assessment of kinetics and equilibrium adsorption parameters in porous solid catalysts by means of pulse injection methods is established. Fil: Bidabehere, Claudia María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina Fil: Sedran, Ulises Anselmo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; Argentina |
description |
A simple, pseudo-equilibrium model was derived for a catalytic system with a first order chemical reaction and simultaneous diffusive and adsorptive processes, in order to assess the corresponding kinetics and Henry law's-type adsorption parameters. Solutions from this model were compared to exact solutions from a more detailed, general model. It was shown that under most of the experimental conditions used in stirred batch reactors and the usual model considerations, it is only possible to assess apparent adsorption parameters. Also, we observed that a stable relationship between the concentrations in the gas and solid phases is reached. The error produced in assuming that the apparent adsorption constant is the real one was calculated to be very important. The value of the apparent adsorption constant depends on various system properties and experimental conditions, such as the Thiele modulus, the amount of catalyst and the contact time. The ratio between the apparent and real adsorption constants was shown to be the transient effectiveness factor at any moment. This ratio reaches a maximum value for the pseudo-equilibrium state, that is always larger than the steady-state effectiveness factor, becoming closer as long as the system's adsorption capacity decreases. The analysis determines the operative conditions to reduce the parametric correlation. Also a criterion for the applicability of usual approximations in the assessment of kinetics and equilibrium adsorption parameters in porous solid catalysts by means of pulse injection methods is established. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/65318 Bidabehere, Claudia María; Sedran, Ulises Anselmo; Use of stirred batch reactors for the assessment of adsorption constants in porous solid catalysts with simultaneous diffusion and reaction. Theoretical analysis; Pergamon-Elsevier Science Ltd; Chemical Engineering Science; 61; 6; 3-2006; 2048-2055 0009-2509 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/65318 |
identifier_str_mv |
Bidabehere, Claudia María; Sedran, Ulises Anselmo; Use of stirred batch reactors for the assessment of adsorption constants in porous solid catalysts with simultaneous diffusion and reaction. Theoretical analysis; Pergamon-Elsevier Science Ltd; Chemical Engineering Science; 61; 6; 3-2006; 2048-2055 0009-2509 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ces.2005.10.043 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083408862642176 |
score |
13.22299 |