Spectrum of J-frame operators
- Autores
- Giribet, Juan Ignacio; Langer, Matthias; Leben, Leslie; Maestripieri, Alejandra Laura; Martinez Peria, Francisco Dardo; Trunk, Carsten Joachim
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A J-frame is a frame F for a Krein space (H, [⋯, ⋯]) which is compatible with the indefinite inner product [⋯, ⋯] in the sense that it induces an indefinite reconstruction formula that resembles those produced by orthonormal bases in H. With every J-frame the so-called J-frame operator is associated, which is a self-adjoint operator in the Krein space H. The J-frame operator plays an essential role in the indefinite reconstruction formula. In this paper we characterize the class of J-frame operators in a Krein space by a 2 × 2 block operator representation. The J-frame bounds of F are then recovered as the suprema and infima of the numerical ranges of some uniformly positive operators which are build from the entries of the 2 × 2 block representation. Moreover, this 2 × 2 block representation is utilized to obtain enclosures for the spectrum of J-frame operators, which finally leads to the construction of a square root. This square root allows a complete description of all J-frames associated with a given J-frame operator.
Fil: Giribet, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Langer, Matthias. University of Strathclyde; Reino Unido
Fil: Leben, Leslie. Technische Universität Ilmenau; Alemania
Fil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Martinez Peria, Francisco Dardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Trunk, Carsten Joachim. Technische Universität Ilmenau; Alemania - Materia
-
BLOCK OPERATOR MATRIX
FRAME
KREIN SPACE
SPECTRUM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/88413
Ver los metadatos del registro completo
id |
CONICETDig_2eaed73940db296befa313d6d02deb69 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/88413 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Spectrum of J-frame operatorsGiribet, Juan IgnacioLanger, MatthiasLeben, LeslieMaestripieri, Alejandra LauraMartinez Peria, Francisco DardoTrunk, Carsten JoachimBLOCK OPERATOR MATRIXFRAMEKREIN SPACESPECTRUMhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A J-frame is a frame F for a Krein space (H, [⋯, ⋯]) which is compatible with the indefinite inner product [⋯, ⋯] in the sense that it induces an indefinite reconstruction formula that resembles those produced by orthonormal bases in H. With every J-frame the so-called J-frame operator is associated, which is a self-adjoint operator in the Krein space H. The J-frame operator plays an essential role in the indefinite reconstruction formula. In this paper we characterize the class of J-frame operators in a Krein space by a 2 × 2 block operator representation. The J-frame bounds of F are then recovered as the suprema and infima of the numerical ranges of some uniformly positive operators which are build from the entries of the 2 × 2 block representation. Moreover, this 2 × 2 block representation is utilized to obtain enclosures for the spectrum of J-frame operators, which finally leads to the construction of a square root. This square root allows a complete description of all J-frames associated with a given J-frame operator.Fil: Giribet, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Langer, Matthias. University of Strathclyde; Reino UnidoFil: Leben, Leslie. Technische Universität Ilmenau; AlemaniaFil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Martinez Peria, Francisco Dardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Trunk, Carsten Joachim. Technische Universität Ilmenau; AlemaniaAGH University of Science and Technology2018-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88413Giribet, Juan Ignacio; Langer, Matthias; Leben, Leslie; Maestripieri, Alejandra Laura; Martinez Peria, Francisco Dardo; et al.; Spectrum of J-frame operators; AGH University of Science and Technology; Opuscula Mathematica; 38; 5; 5-2018; 623-6491232-92742300−6919CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.opuscula.agh.edu.pl/om-vol38iss5art2info:eu-repo/semantics/altIdentifier/doi/10.7494/OpMath.2018.38.5.623info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:55:12Zoai:ri.conicet.gov.ar:11336/88413instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:55:12.348CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Spectrum of J-frame operators |
title |
Spectrum of J-frame operators |
spellingShingle |
Spectrum of J-frame operators Giribet, Juan Ignacio BLOCK OPERATOR MATRIX FRAME KREIN SPACE SPECTRUM |
title_short |
Spectrum of J-frame operators |
title_full |
Spectrum of J-frame operators |
title_fullStr |
Spectrum of J-frame operators |
title_full_unstemmed |
Spectrum of J-frame operators |
title_sort |
Spectrum of J-frame operators |
dc.creator.none.fl_str_mv |
Giribet, Juan Ignacio Langer, Matthias Leben, Leslie Maestripieri, Alejandra Laura Martinez Peria, Francisco Dardo Trunk, Carsten Joachim |
author |
Giribet, Juan Ignacio |
author_facet |
Giribet, Juan Ignacio Langer, Matthias Leben, Leslie Maestripieri, Alejandra Laura Martinez Peria, Francisco Dardo Trunk, Carsten Joachim |
author_role |
author |
author2 |
Langer, Matthias Leben, Leslie Maestripieri, Alejandra Laura Martinez Peria, Francisco Dardo Trunk, Carsten Joachim |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
BLOCK OPERATOR MATRIX FRAME KREIN SPACE SPECTRUM |
topic |
BLOCK OPERATOR MATRIX FRAME KREIN SPACE SPECTRUM |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A J-frame is a frame F for a Krein space (H, [⋯, ⋯]) which is compatible with the indefinite inner product [⋯, ⋯] in the sense that it induces an indefinite reconstruction formula that resembles those produced by orthonormal bases in H. With every J-frame the so-called J-frame operator is associated, which is a self-adjoint operator in the Krein space H. The J-frame operator plays an essential role in the indefinite reconstruction formula. In this paper we characterize the class of J-frame operators in a Krein space by a 2 × 2 block operator representation. The J-frame bounds of F are then recovered as the suprema and infima of the numerical ranges of some uniformly positive operators which are build from the entries of the 2 × 2 block representation. Moreover, this 2 × 2 block representation is utilized to obtain enclosures for the spectrum of J-frame operators, which finally leads to the construction of a square root. This square root allows a complete description of all J-frames associated with a given J-frame operator. Fil: Giribet, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Langer, Matthias. University of Strathclyde; Reino Unido Fil: Leben, Leslie. Technische Universität Ilmenau; Alemania Fil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Martinez Peria, Francisco Dardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Trunk, Carsten Joachim. Technische Universität Ilmenau; Alemania |
description |
A J-frame is a frame F for a Krein space (H, [⋯, ⋯]) which is compatible with the indefinite inner product [⋯, ⋯] in the sense that it induces an indefinite reconstruction formula that resembles those produced by orthonormal bases in H. With every J-frame the so-called J-frame operator is associated, which is a self-adjoint operator in the Krein space H. The J-frame operator plays an essential role in the indefinite reconstruction formula. In this paper we characterize the class of J-frame operators in a Krein space by a 2 × 2 block operator representation. The J-frame bounds of F are then recovered as the suprema and infima of the numerical ranges of some uniformly positive operators which are build from the entries of the 2 × 2 block representation. Moreover, this 2 × 2 block representation is utilized to obtain enclosures for the spectrum of J-frame operators, which finally leads to the construction of a square root. This square root allows a complete description of all J-frames associated with a given J-frame operator. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/88413 Giribet, Juan Ignacio; Langer, Matthias; Leben, Leslie; Maestripieri, Alejandra Laura; Martinez Peria, Francisco Dardo; et al.; Spectrum of J-frame operators; AGH University of Science and Technology; Opuscula Mathematica; 38; 5; 5-2018; 623-649 1232-9274 2300−6919 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/88413 |
identifier_str_mv |
Giribet, Juan Ignacio; Langer, Matthias; Leben, Leslie; Maestripieri, Alejandra Laura; Martinez Peria, Francisco Dardo; et al.; Spectrum of J-frame operators; AGH University of Science and Technology; Opuscula Mathematica; 38; 5; 5-2018; 623-649 1232-9274 2300−6919 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.opuscula.agh.edu.pl/om-vol38iss5art2 info:eu-repo/semantics/altIdentifier/doi/10.7494/OpMath.2018.38.5.623 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
AGH University of Science and Technology |
publisher.none.fl_str_mv |
AGH University of Science and Technology |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613665968357376 |
score |
13.070432 |