pKa modeling and prediction of a series of pH indicators through genetic algorithm-least square support vector regression
- Autores
- Goodarzi, Mohammad; Freitas, Matheus P.; Wu, Chih H.; Duchowicz, Pablo Román
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The pKa values of a series of 107 indicators have been modeled by means of a quantitative structure–property relationship (QSPR) approach based on physicochemical descriptors and different variable selection and regression methods. A genetic algorithm/least square support vector regression (GA-LSSVR) model gave the most accurate estimations/predictions, with squared correlation coefficients of 0.90 and 0.89 for the training and test set compounds, respectively. The prediction ability of this model was found to be superior to that based on support vector machine regression alone, revealing the important effect of selecting suitabledescriptors during a QSPR modeling. Moreover, the GA-LSSVR model showed higher predictive capability than linear methods, demonstrating the influence of nonlinearity on the modeling of pKa values, an extremely useful parameter in the analytical sciences.
Fil: Goodarzi, Mohammad. Islamic Azad University; Irán
Fil: Freitas, Matheus P.. Universidad Federal de Lavras; Brasil
Fil: Wu, Chih H.. National Taichung University; China
Fil: Duchowicz, Pablo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina - Materia
-
pKa
pH indicators
Quantitative structureproperty relationships
Support vector machines
GA-LSSVR - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/247639
Ver los metadatos del registro completo
id |
CONICETDig_2e2d6bbc9a4f460cdbeb9667fcd9ae68 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/247639 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
pKa modeling and prediction of a series of pH indicators through genetic algorithm-least square support vector regressionGoodarzi, MohammadFreitas, Matheus P.Wu, Chih H.Duchowicz, Pablo RománpKapH indicatorsQuantitative structureproperty relationshipsSupport vector machinesGA-LSSVRhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The pKa values of a series of 107 indicators have been modeled by means of a quantitative structure–property relationship (QSPR) approach based on physicochemical descriptors and different variable selection and regression methods. A genetic algorithm/least square support vector regression (GA-LSSVR) model gave the most accurate estimations/predictions, with squared correlation coefficients of 0.90 and 0.89 for the training and test set compounds, respectively. The prediction ability of this model was found to be superior to that based on support vector machine regression alone, revealing the important effect of selecting suitabledescriptors during a QSPR modeling. Moreover, the GA-LSSVR model showed higher predictive capability than linear methods, demonstrating the influence of nonlinearity on the modeling of pKa values, an extremely useful parameter in the analytical sciences.Fil: Goodarzi, Mohammad. Islamic Azad University; IránFil: Freitas, Matheus P.. Universidad Federal de Lavras; BrasilFil: Wu, Chih H.. National Taichung University; ChinaFil: Duchowicz, Pablo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaElsevier Science2010-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/247639Goodarzi, Mohammad; Freitas, Matheus P.; Wu, Chih H.; Duchowicz, Pablo Román; pKa modeling and prediction of a series of pH indicators through genetic algorithm-least square support vector regression; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 101; 2; 4-2010; 102-1090169-7439CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0169743910000274info:eu-repo/semantics/altIdentifier/doi/10.1016/j.chemolab.2010.02.003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:10:37Zoai:ri.conicet.gov.ar:11336/247639instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:10:37.74CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
pKa modeling and prediction of a series of pH indicators through genetic algorithm-least square support vector regression |
title |
pKa modeling and prediction of a series of pH indicators through genetic algorithm-least square support vector regression |
spellingShingle |
pKa modeling and prediction of a series of pH indicators through genetic algorithm-least square support vector regression Goodarzi, Mohammad pKa pH indicators Quantitative structureproperty relationships Support vector machines GA-LSSVR |
title_short |
pKa modeling and prediction of a series of pH indicators through genetic algorithm-least square support vector regression |
title_full |
pKa modeling and prediction of a series of pH indicators through genetic algorithm-least square support vector regression |
title_fullStr |
pKa modeling and prediction of a series of pH indicators through genetic algorithm-least square support vector regression |
title_full_unstemmed |
pKa modeling and prediction of a series of pH indicators through genetic algorithm-least square support vector regression |
title_sort |
pKa modeling and prediction of a series of pH indicators through genetic algorithm-least square support vector regression |
dc.creator.none.fl_str_mv |
Goodarzi, Mohammad Freitas, Matheus P. Wu, Chih H. Duchowicz, Pablo Román |
author |
Goodarzi, Mohammad |
author_facet |
Goodarzi, Mohammad Freitas, Matheus P. Wu, Chih H. Duchowicz, Pablo Román |
author_role |
author |
author2 |
Freitas, Matheus P. Wu, Chih H. Duchowicz, Pablo Román |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
pKa pH indicators Quantitative structureproperty relationships Support vector machines GA-LSSVR |
topic |
pKa pH indicators Quantitative structureproperty relationships Support vector machines GA-LSSVR |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The pKa values of a series of 107 indicators have been modeled by means of a quantitative structure–property relationship (QSPR) approach based on physicochemical descriptors and different variable selection and regression methods. A genetic algorithm/least square support vector regression (GA-LSSVR) model gave the most accurate estimations/predictions, with squared correlation coefficients of 0.90 and 0.89 for the training and test set compounds, respectively. The prediction ability of this model was found to be superior to that based on support vector machine regression alone, revealing the important effect of selecting suitabledescriptors during a QSPR modeling. Moreover, the GA-LSSVR model showed higher predictive capability than linear methods, demonstrating the influence of nonlinearity on the modeling of pKa values, an extremely useful parameter in the analytical sciences. Fil: Goodarzi, Mohammad. Islamic Azad University; Irán Fil: Freitas, Matheus P.. Universidad Federal de Lavras; Brasil Fil: Wu, Chih H.. National Taichung University; China Fil: Duchowicz, Pablo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina |
description |
The pKa values of a series of 107 indicators have been modeled by means of a quantitative structure–property relationship (QSPR) approach based on physicochemical descriptors and different variable selection and regression methods. A genetic algorithm/least square support vector regression (GA-LSSVR) model gave the most accurate estimations/predictions, with squared correlation coefficients of 0.90 and 0.89 for the training and test set compounds, respectively. The prediction ability of this model was found to be superior to that based on support vector machine regression alone, revealing the important effect of selecting suitabledescriptors during a QSPR modeling. Moreover, the GA-LSSVR model showed higher predictive capability than linear methods, demonstrating the influence of nonlinearity on the modeling of pKa values, an extremely useful parameter in the analytical sciences. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/247639 Goodarzi, Mohammad; Freitas, Matheus P.; Wu, Chih H.; Duchowicz, Pablo Román; pKa modeling and prediction of a series of pH indicators through genetic algorithm-least square support vector regression; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 101; 2; 4-2010; 102-109 0169-7439 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/247639 |
identifier_str_mv |
Goodarzi, Mohammad; Freitas, Matheus P.; Wu, Chih H.; Duchowicz, Pablo Román; pKa modeling and prediction of a series of pH indicators through genetic algorithm-least square support vector regression; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 101; 2; 4-2010; 102-109 0169-7439 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0169743910000274 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.chemolab.2010.02.003 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613997007994880 |
score |
13.070432 |