Photodynamic inactivation mechanism of Streptococcus mitis sensitized by zinc(II) 2,9,16,23-tetrakis[2-(N,N,N-trimethylamino) ethoxy]phthalocyanine

Autores
Spesia, Mariana Belen; Durantini, Edgardo Néstor
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Photoinactivation of Streptococcus mitis induced by zinc(II) 2,9,16,23-tetrakis[2-(N,N,N-trimethylamino)ethoxy]phthalocyanine (ZnEPc4+) was studied under different experimental condition in order to obtain information about the photodynamic processes and the cellular damage. A 3 log decrease in S. mitis survival was found in cell suspensions (∼2 × 108 cells/mL) incubated with 2 μM ZnEPc4+ and irradiated for 30 min with visible light (54 J/cm2). Also, S. mitis cells growth was not detected in broth treated with 5 μM ZnEPc4+ under continuous irradiation. Studies of photodynamic action mechanism showed that the cells were protected in the presence of azide ion, while the addition of mannitol did not produce a significant effect on the survival. Moreover, the photocytotoxicity was increased in D2O indicating the interference of singlet molecular oxygen. On the other hand, it was found that ZnEPc4+ interacts strongly with calf thymus DNA in solution but photocleavage of DNA was only detected after long irradiation periods. After S. mitis photoinactivation, modifications of genomic DNA were not observed by electrophoresis. In contrast, the transmission electron microscopy showed structural changes in the S. mitis cells, exhibiting mesosome-like structures. After 2 h irradiation, the cytoplasm showed segregation patterns and PDI appeared to have effects on the cell wall, including variability in wall thickness. Also, the presence of bubbles was detected on the cell surface by scanning electron microscopy. However, the photodamage to the cell envelope was insufficient to cause the release of intracellular biopolymers. Therefore, modifications in the cytoplasmic biomolecules and alteration in the cell barriers could be mainly involved in S. mitis photoinactivation. It can be concluded that photosensitization by ZnEPc4+ mainly involved a type II photoprocess, while alteration in the cytoplasmatic components and modifications in the cell envelope were the major cause for the photoinactivation of S. mitis.
Fil: Spesia, Mariana Belen. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Durantini, Edgardo Néstor. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Phthalocyanine
Photosensitizer
Photodynamic Inactivation
Bacteria
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/23302

id CONICETDig_2b81088224fcfaf64d17299b46cb4861
oai_identifier_str oai:ri.conicet.gov.ar:11336/23302
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Photodynamic inactivation mechanism of Streptococcus mitis sensitized by zinc(II) 2,9,16,23-tetrakis[2-(N,N,N-trimethylamino) ethoxy]phthalocyanineSpesia, Mariana BelenDurantini, Edgardo NéstorPhthalocyaninePhotosensitizerPhotodynamic InactivationBacteriahttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Photoinactivation of Streptococcus mitis induced by zinc(II) 2,9,16,23-tetrakis[2-(N,N,N-trimethylamino)ethoxy]phthalocyanine (ZnEPc4+) was studied under different experimental condition in order to obtain information about the photodynamic processes and the cellular damage. A 3 log decrease in S. mitis survival was found in cell suspensions (∼2 × 108 cells/mL) incubated with 2 μM ZnEPc4+ and irradiated for 30 min with visible light (54 J/cm2). Also, S. mitis cells growth was not detected in broth treated with 5 μM ZnEPc4+ under continuous irradiation. Studies of photodynamic action mechanism showed that the cells were protected in the presence of azide ion, while the addition of mannitol did not produce a significant effect on the survival. Moreover, the photocytotoxicity was increased in D2O indicating the interference of singlet molecular oxygen. On the other hand, it was found that ZnEPc4+ interacts strongly with calf thymus DNA in solution but photocleavage of DNA was only detected after long irradiation periods. After S. mitis photoinactivation, modifications of genomic DNA were not observed by electrophoresis. In contrast, the transmission electron microscopy showed structural changes in the S. mitis cells, exhibiting mesosome-like structures. After 2 h irradiation, the cytoplasm showed segregation patterns and PDI appeared to have effects on the cell wall, including variability in wall thickness. Also, the presence of bubbles was detected on the cell surface by scanning electron microscopy. However, the photodamage to the cell envelope was insufficient to cause the release of intracellular biopolymers. Therefore, modifications in the cytoplasmic biomolecules and alteration in the cell barriers could be mainly involved in S. mitis photoinactivation. It can be concluded that photosensitization by ZnEPc4+ mainly involved a type II photoprocess, while alteration in the cytoplasmatic components and modifications in the cell envelope were the major cause for the photoinactivation of S. mitis.Fil: Spesia, Mariana Belen. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Durantini, Edgardo Néstor. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier2013-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/23302Spesia, Mariana Belen; Durantini, Edgardo Néstor; Photodynamic inactivation mechanism of Streptococcus mitis sensitized by zinc(II) 2,9,16,23-tetrakis[2-(N,N,N-trimethylamino) ethoxy]phthalocyanine; Elsevier; Journal of Photochemistry and Photobiology B: Biology; 125; 6-2013; 179-1871011-1344CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jphotobiol.2013.06.007info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1011134413001280info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:10:48Zoai:ri.conicet.gov.ar:11336/23302instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:10:49.134CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Photodynamic inactivation mechanism of Streptococcus mitis sensitized by zinc(II) 2,9,16,23-tetrakis[2-(N,N,N-trimethylamino) ethoxy]phthalocyanine
title Photodynamic inactivation mechanism of Streptococcus mitis sensitized by zinc(II) 2,9,16,23-tetrakis[2-(N,N,N-trimethylamino) ethoxy]phthalocyanine
spellingShingle Photodynamic inactivation mechanism of Streptococcus mitis sensitized by zinc(II) 2,9,16,23-tetrakis[2-(N,N,N-trimethylamino) ethoxy]phthalocyanine
Spesia, Mariana Belen
Phthalocyanine
Photosensitizer
Photodynamic Inactivation
Bacteria
title_short Photodynamic inactivation mechanism of Streptococcus mitis sensitized by zinc(II) 2,9,16,23-tetrakis[2-(N,N,N-trimethylamino) ethoxy]phthalocyanine
title_full Photodynamic inactivation mechanism of Streptococcus mitis sensitized by zinc(II) 2,9,16,23-tetrakis[2-(N,N,N-trimethylamino) ethoxy]phthalocyanine
title_fullStr Photodynamic inactivation mechanism of Streptococcus mitis sensitized by zinc(II) 2,9,16,23-tetrakis[2-(N,N,N-trimethylamino) ethoxy]phthalocyanine
title_full_unstemmed Photodynamic inactivation mechanism of Streptococcus mitis sensitized by zinc(II) 2,9,16,23-tetrakis[2-(N,N,N-trimethylamino) ethoxy]phthalocyanine
title_sort Photodynamic inactivation mechanism of Streptococcus mitis sensitized by zinc(II) 2,9,16,23-tetrakis[2-(N,N,N-trimethylamino) ethoxy]phthalocyanine
dc.creator.none.fl_str_mv Spesia, Mariana Belen
Durantini, Edgardo Néstor
author Spesia, Mariana Belen
author_facet Spesia, Mariana Belen
Durantini, Edgardo Néstor
author_role author
author2 Durantini, Edgardo Néstor
author2_role author
dc.subject.none.fl_str_mv Phthalocyanine
Photosensitizer
Photodynamic Inactivation
Bacteria
topic Phthalocyanine
Photosensitizer
Photodynamic Inactivation
Bacteria
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Photoinactivation of Streptococcus mitis induced by zinc(II) 2,9,16,23-tetrakis[2-(N,N,N-trimethylamino)ethoxy]phthalocyanine (ZnEPc4+) was studied under different experimental condition in order to obtain information about the photodynamic processes and the cellular damage. A 3 log decrease in S. mitis survival was found in cell suspensions (∼2 × 108 cells/mL) incubated with 2 μM ZnEPc4+ and irradiated for 30 min with visible light (54 J/cm2). Also, S. mitis cells growth was not detected in broth treated with 5 μM ZnEPc4+ under continuous irradiation. Studies of photodynamic action mechanism showed that the cells were protected in the presence of azide ion, while the addition of mannitol did not produce a significant effect on the survival. Moreover, the photocytotoxicity was increased in D2O indicating the interference of singlet molecular oxygen. On the other hand, it was found that ZnEPc4+ interacts strongly with calf thymus DNA in solution but photocleavage of DNA was only detected after long irradiation periods. After S. mitis photoinactivation, modifications of genomic DNA were not observed by electrophoresis. In contrast, the transmission electron microscopy showed structural changes in the S. mitis cells, exhibiting mesosome-like structures. After 2 h irradiation, the cytoplasm showed segregation patterns and PDI appeared to have effects on the cell wall, including variability in wall thickness. Also, the presence of bubbles was detected on the cell surface by scanning electron microscopy. However, the photodamage to the cell envelope was insufficient to cause the release of intracellular biopolymers. Therefore, modifications in the cytoplasmic biomolecules and alteration in the cell barriers could be mainly involved in S. mitis photoinactivation. It can be concluded that photosensitization by ZnEPc4+ mainly involved a type II photoprocess, while alteration in the cytoplasmatic components and modifications in the cell envelope were the major cause for the photoinactivation of S. mitis.
Fil: Spesia, Mariana Belen. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Durantini, Edgardo Néstor. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Photoinactivation of Streptococcus mitis induced by zinc(II) 2,9,16,23-tetrakis[2-(N,N,N-trimethylamino)ethoxy]phthalocyanine (ZnEPc4+) was studied under different experimental condition in order to obtain information about the photodynamic processes and the cellular damage. A 3 log decrease in S. mitis survival was found in cell suspensions (∼2 × 108 cells/mL) incubated with 2 μM ZnEPc4+ and irradiated for 30 min with visible light (54 J/cm2). Also, S. mitis cells growth was not detected in broth treated with 5 μM ZnEPc4+ under continuous irradiation. Studies of photodynamic action mechanism showed that the cells were protected in the presence of azide ion, while the addition of mannitol did not produce a significant effect on the survival. Moreover, the photocytotoxicity was increased in D2O indicating the interference of singlet molecular oxygen. On the other hand, it was found that ZnEPc4+ interacts strongly with calf thymus DNA in solution but photocleavage of DNA was only detected after long irradiation periods. After S. mitis photoinactivation, modifications of genomic DNA were not observed by electrophoresis. In contrast, the transmission electron microscopy showed structural changes in the S. mitis cells, exhibiting mesosome-like structures. After 2 h irradiation, the cytoplasm showed segregation patterns and PDI appeared to have effects on the cell wall, including variability in wall thickness. Also, the presence of bubbles was detected on the cell surface by scanning electron microscopy. However, the photodamage to the cell envelope was insufficient to cause the release of intracellular biopolymers. Therefore, modifications in the cytoplasmic biomolecules and alteration in the cell barriers could be mainly involved in S. mitis photoinactivation. It can be concluded that photosensitization by ZnEPc4+ mainly involved a type II photoprocess, while alteration in the cytoplasmatic components and modifications in the cell envelope were the major cause for the photoinactivation of S. mitis.
publishDate 2013
dc.date.none.fl_str_mv 2013-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/23302
Spesia, Mariana Belen; Durantini, Edgardo Néstor; Photodynamic inactivation mechanism of Streptococcus mitis sensitized by zinc(II) 2,9,16,23-tetrakis[2-(N,N,N-trimethylamino) ethoxy]phthalocyanine; Elsevier; Journal of Photochemistry and Photobiology B: Biology; 125; 6-2013; 179-187
1011-1344
CONICET Digital
CONICET
url http://hdl.handle.net/11336/23302
identifier_str_mv Spesia, Mariana Belen; Durantini, Edgardo Néstor; Photodynamic inactivation mechanism of Streptococcus mitis sensitized by zinc(II) 2,9,16,23-tetrakis[2-(N,N,N-trimethylamino) ethoxy]phthalocyanine; Elsevier; Journal of Photochemistry and Photobiology B: Biology; 125; 6-2013; 179-187
1011-1344
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jphotobiol.2013.06.007
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1011134413001280
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270133089730560
score 13.13397