Flocculation of Cellulose Microfiber and Nanofiber Induced by Chitosan–Xylan Complexes
- Autores
- Bastida, Gabriela Adriana; Tarrés, Quim; Aguado, Roberto; Delgado Aguilar, Marc; Zanuttini, Miguel Angel Mario; Galván, María Verónica
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This study aims to provide a comprehensive understanding of the key factors influencing the rheological behavior and the mechanisms of natural polyelectrolyte complexes (PECs) as flocculation agents for cellulose microfibers (CMFs) and nanofibers (CNFs). PECs were formed by combining two polyelectrolytes: xylan (Xyl) and chitosan (Ch), at different Xyl/Ch mass ratios: 60/40, 70/30, and 80/20. First, Xyl, Ch, and PEC solutions were characterized by measuring viscosity, critical concentration (c*), rheological parameter, ζ-potential, and hydrodynamic size. Then, the flocculation mechanisms of CMF and CNF suspensions with PECs under dynamic conditions were studied by measuring viscosity, while the flocculation under static conditions was examined through gel point measurements, floc average size determination, and ζ-potential analysis. The findings reveal that PEC solutions formed with a lower xylan mass ratio showed higher intrinsic viscosity, higher hydrodynamic size, higher z-potential, and a lower c*. This is due to the high molecular weight, charge, and gel-forming ability. All the analyzed solutions behave as a typical non-Newtonian shear-thinning fluid. The flocculation mechanisms under dynamic conditions showed that a very low dosage of PEC (between 2 and 6 mg PEC/g of fiber) was sufficient to produce flocculation. Under dynamic conditions, an increase in viscosity indicates flocculation at this low PEC dosage. Finally, under static conditions, maximum floc sizes were observed at the same PEC dosage where minimum gel points were reached. Higher PEC doses were required for CNF suspensions than for CMF suspensions.
Fil: Bastida, Gabriela Adriana. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Tecnología Celulósica; Argentina
Fil: Tarrés, Quim. Universidad de Girona; España
Fil: Aguado, Roberto. Universidad de Girona; España
Fil: Delgado Aguilar, Marc. Universidad de Girona; España
Fil: Zanuttini, Miguel Angel Mario. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Tecnología Celulósica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Fil: Galván, María Verónica. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Tecnología Celulósica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina - Materia
-
CHITOSAN
FLOC SIZE
FLOCCULATION
GEL POINT
NANOCELLULOSE
VISCOSITY
XYLAN - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/224991
Ver los metadatos del registro completo
id |
CONICETDig_2b3e31f854d7c32faa7837b725ceedce |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/224991 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Flocculation of Cellulose Microfiber and Nanofiber Induced by Chitosan–Xylan ComplexesBastida, Gabriela AdrianaTarrés, QuimAguado, RobertoDelgado Aguilar, MarcZanuttini, Miguel Angel MarioGalván, María VerónicaCHITOSANFLOC SIZEFLOCCULATIONGEL POINTNANOCELLULOSEVISCOSITYXYLANhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2This study aims to provide a comprehensive understanding of the key factors influencing the rheological behavior and the mechanisms of natural polyelectrolyte complexes (PECs) as flocculation agents for cellulose microfibers (CMFs) and nanofibers (CNFs). PECs were formed by combining two polyelectrolytes: xylan (Xyl) and chitosan (Ch), at different Xyl/Ch mass ratios: 60/40, 70/30, and 80/20. First, Xyl, Ch, and PEC solutions were characterized by measuring viscosity, critical concentration (c*), rheological parameter, ζ-potential, and hydrodynamic size. Then, the flocculation mechanisms of CMF and CNF suspensions with PECs under dynamic conditions were studied by measuring viscosity, while the flocculation under static conditions was examined through gel point measurements, floc average size determination, and ζ-potential analysis. The findings reveal that PEC solutions formed with a lower xylan mass ratio showed higher intrinsic viscosity, higher hydrodynamic size, higher z-potential, and a lower c*. This is due to the high molecular weight, charge, and gel-forming ability. All the analyzed solutions behave as a typical non-Newtonian shear-thinning fluid. The flocculation mechanisms under dynamic conditions showed that a very low dosage of PEC (between 2 and 6 mg PEC/g of fiber) was sufficient to produce flocculation. Under dynamic conditions, an increase in viscosity indicates flocculation at this low PEC dosage. Finally, under static conditions, maximum floc sizes were observed at the same PEC dosage where minimum gel points were reached. Higher PEC doses were required for CNF suspensions than for CMF suspensions.Fil: Bastida, Gabriela Adriana. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Tecnología Celulósica; ArgentinaFil: Tarrés, Quim. Universidad de Girona; EspañaFil: Aguado, Roberto. Universidad de Girona; EspañaFil: Delgado Aguilar, Marc. Universidad de Girona; EspañaFil: Zanuttini, Miguel Angel Mario. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Tecnología Celulósica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Galván, María Verónica. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Tecnología Celulósica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaMDPI2023-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/224991Bastida, Gabriela Adriana; Tarrés, Quim; Aguado, Roberto; Delgado Aguilar, Marc; Zanuttini, Miguel Angel Mario; et al.; Flocculation of Cellulose Microfiber and Nanofiber Induced by Chitosan–Xylan Complexes; MDPI; Nanomaterials; 13; 17; 8-2023; 1-152079-4991CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2079-4991/13/17/2420info:eu-repo/semantics/altIdentifier/doi/10.3390/nano13172420info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:10:19Zoai:ri.conicet.gov.ar:11336/224991instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:10:19.798CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Flocculation of Cellulose Microfiber and Nanofiber Induced by Chitosan–Xylan Complexes |
title |
Flocculation of Cellulose Microfiber and Nanofiber Induced by Chitosan–Xylan Complexes |
spellingShingle |
Flocculation of Cellulose Microfiber and Nanofiber Induced by Chitosan–Xylan Complexes Bastida, Gabriela Adriana CHITOSAN FLOC SIZE FLOCCULATION GEL POINT NANOCELLULOSE VISCOSITY XYLAN |
title_short |
Flocculation of Cellulose Microfiber and Nanofiber Induced by Chitosan–Xylan Complexes |
title_full |
Flocculation of Cellulose Microfiber and Nanofiber Induced by Chitosan–Xylan Complexes |
title_fullStr |
Flocculation of Cellulose Microfiber and Nanofiber Induced by Chitosan–Xylan Complexes |
title_full_unstemmed |
Flocculation of Cellulose Microfiber and Nanofiber Induced by Chitosan–Xylan Complexes |
title_sort |
Flocculation of Cellulose Microfiber and Nanofiber Induced by Chitosan–Xylan Complexes |
dc.creator.none.fl_str_mv |
Bastida, Gabriela Adriana Tarrés, Quim Aguado, Roberto Delgado Aguilar, Marc Zanuttini, Miguel Angel Mario Galván, María Verónica |
author |
Bastida, Gabriela Adriana |
author_facet |
Bastida, Gabriela Adriana Tarrés, Quim Aguado, Roberto Delgado Aguilar, Marc Zanuttini, Miguel Angel Mario Galván, María Verónica |
author_role |
author |
author2 |
Tarrés, Quim Aguado, Roberto Delgado Aguilar, Marc Zanuttini, Miguel Angel Mario Galván, María Verónica |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
CHITOSAN FLOC SIZE FLOCCULATION GEL POINT NANOCELLULOSE VISCOSITY XYLAN |
topic |
CHITOSAN FLOC SIZE FLOCCULATION GEL POINT NANOCELLULOSE VISCOSITY XYLAN |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This study aims to provide a comprehensive understanding of the key factors influencing the rheological behavior and the mechanisms of natural polyelectrolyte complexes (PECs) as flocculation agents for cellulose microfibers (CMFs) and nanofibers (CNFs). PECs were formed by combining two polyelectrolytes: xylan (Xyl) and chitosan (Ch), at different Xyl/Ch mass ratios: 60/40, 70/30, and 80/20. First, Xyl, Ch, and PEC solutions were characterized by measuring viscosity, critical concentration (c*), rheological parameter, ζ-potential, and hydrodynamic size. Then, the flocculation mechanisms of CMF and CNF suspensions with PECs under dynamic conditions were studied by measuring viscosity, while the flocculation under static conditions was examined through gel point measurements, floc average size determination, and ζ-potential analysis. The findings reveal that PEC solutions formed with a lower xylan mass ratio showed higher intrinsic viscosity, higher hydrodynamic size, higher z-potential, and a lower c*. This is due to the high molecular weight, charge, and gel-forming ability. All the analyzed solutions behave as a typical non-Newtonian shear-thinning fluid. The flocculation mechanisms under dynamic conditions showed that a very low dosage of PEC (between 2 and 6 mg PEC/g of fiber) was sufficient to produce flocculation. Under dynamic conditions, an increase in viscosity indicates flocculation at this low PEC dosage. Finally, under static conditions, maximum floc sizes were observed at the same PEC dosage where minimum gel points were reached. Higher PEC doses were required for CNF suspensions than for CMF suspensions. Fil: Bastida, Gabriela Adriana. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Tecnología Celulósica; Argentina Fil: Tarrés, Quim. Universidad de Girona; España Fil: Aguado, Roberto. Universidad de Girona; España Fil: Delgado Aguilar, Marc. Universidad de Girona; España Fil: Zanuttini, Miguel Angel Mario. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Tecnología Celulósica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina Fil: Galván, María Verónica. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Tecnología Celulósica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina |
description |
This study aims to provide a comprehensive understanding of the key factors influencing the rheological behavior and the mechanisms of natural polyelectrolyte complexes (PECs) as flocculation agents for cellulose microfibers (CMFs) and nanofibers (CNFs). PECs were formed by combining two polyelectrolytes: xylan (Xyl) and chitosan (Ch), at different Xyl/Ch mass ratios: 60/40, 70/30, and 80/20. First, Xyl, Ch, and PEC solutions were characterized by measuring viscosity, critical concentration (c*), rheological parameter, ζ-potential, and hydrodynamic size. Then, the flocculation mechanisms of CMF and CNF suspensions with PECs under dynamic conditions were studied by measuring viscosity, while the flocculation under static conditions was examined through gel point measurements, floc average size determination, and ζ-potential analysis. The findings reveal that PEC solutions formed with a lower xylan mass ratio showed higher intrinsic viscosity, higher hydrodynamic size, higher z-potential, and a lower c*. This is due to the high molecular weight, charge, and gel-forming ability. All the analyzed solutions behave as a typical non-Newtonian shear-thinning fluid. The flocculation mechanisms under dynamic conditions showed that a very low dosage of PEC (between 2 and 6 mg PEC/g of fiber) was sufficient to produce flocculation. Under dynamic conditions, an increase in viscosity indicates flocculation at this low PEC dosage. Finally, under static conditions, maximum floc sizes were observed at the same PEC dosage where minimum gel points were reached. Higher PEC doses were required for CNF suspensions than for CMF suspensions. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/224991 Bastida, Gabriela Adriana; Tarrés, Quim; Aguado, Roberto; Delgado Aguilar, Marc; Zanuttini, Miguel Angel Mario; et al.; Flocculation of Cellulose Microfiber and Nanofiber Induced by Chitosan–Xylan Complexes; MDPI; Nanomaterials; 13; 17; 8-2023; 1-15 2079-4991 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/224991 |
identifier_str_mv |
Bastida, Gabriela Adriana; Tarrés, Quim; Aguado, Roberto; Delgado Aguilar, Marc; Zanuttini, Miguel Angel Mario; et al.; Flocculation of Cellulose Microfiber and Nanofiber Induced by Chitosan–Xylan Complexes; MDPI; Nanomaterials; 13; 17; 8-2023; 1-15 2079-4991 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2079-4991/13/17/2420 info:eu-repo/semantics/altIdentifier/doi/10.3390/nano13172420 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270114405154816 |
score |
13.13397 |