Flocculation of Cellulose Microfiber and Nanofiber Induced by Chitosan–Xylan Complexes

Autores
Bastida, Gabriela Adriana; Tarrés, Quim; Aguado, Roberto; Delgado Aguilar, Marc; Zanuttini, Miguel Angel Mario; Galván, María Verónica
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This study aims to provide a comprehensive understanding of the key factors influencing the rheological behavior and the mechanisms of natural polyelectrolyte complexes (PECs) as flocculation agents for cellulose microfibers (CMFs) and nanofibers (CNFs). PECs were formed by combining two polyelectrolytes: xylan (Xyl) and chitosan (Ch), at different Xyl/Ch mass ratios: 60/40, 70/30, and 80/20. First, Xyl, Ch, and PEC solutions were characterized by measuring viscosity, critical concentration (c*), rheological parameter, ζ-potential, and hydrodynamic size. Then, the flocculation mechanisms of CMF and CNF suspensions with PECs under dynamic conditions were studied by measuring viscosity, while the flocculation under static conditions was examined through gel point measurements, floc average size determination, and ζ-potential analysis. The findings reveal that PEC solutions formed with a lower xylan mass ratio showed higher intrinsic viscosity, higher hydrodynamic size, higher z-potential, and a lower c*. This is due to the high molecular weight, charge, and gel-forming ability. All the analyzed solutions behave as a typical non-Newtonian shear-thinning fluid. The flocculation mechanisms under dynamic conditions showed that a very low dosage of PEC (between 2 and 6 mg PEC/g of fiber) was sufficient to produce flocculation. Under dynamic conditions, an increase in viscosity indicates flocculation at this low PEC dosage. Finally, under static conditions, maximum floc sizes were observed at the same PEC dosage where minimum gel points were reached. Higher PEC doses were required for CNF suspensions than for CMF suspensions.
Fil: Bastida, Gabriela Adriana. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Tecnología Celulósica; Argentina
Fil: Tarrés, Quim. Universidad de Girona; España
Fil: Aguado, Roberto. Universidad de Girona; España
Fil: Delgado Aguilar, Marc. Universidad de Girona; España
Fil: Zanuttini, Miguel Angel Mario. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Tecnología Celulósica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Fil: Galván, María Verónica. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Tecnología Celulósica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Materia
CHITOSAN
FLOC SIZE
FLOCCULATION
GEL POINT
NANOCELLULOSE
VISCOSITY
XYLAN
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/224991

id CONICETDig_2b3e31f854d7c32faa7837b725ceedce
oai_identifier_str oai:ri.conicet.gov.ar:11336/224991
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Flocculation of Cellulose Microfiber and Nanofiber Induced by Chitosan–Xylan ComplexesBastida, Gabriela AdrianaTarrés, QuimAguado, RobertoDelgado Aguilar, MarcZanuttini, Miguel Angel MarioGalván, María VerónicaCHITOSANFLOC SIZEFLOCCULATIONGEL POINTNANOCELLULOSEVISCOSITYXYLANhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2This study aims to provide a comprehensive understanding of the key factors influencing the rheological behavior and the mechanisms of natural polyelectrolyte complexes (PECs) as flocculation agents for cellulose microfibers (CMFs) and nanofibers (CNFs). PECs were formed by combining two polyelectrolytes: xylan (Xyl) and chitosan (Ch), at different Xyl/Ch mass ratios: 60/40, 70/30, and 80/20. First, Xyl, Ch, and PEC solutions were characterized by measuring viscosity, critical concentration (c*), rheological parameter, ζ-potential, and hydrodynamic size. Then, the flocculation mechanisms of CMF and CNF suspensions with PECs under dynamic conditions were studied by measuring viscosity, while the flocculation under static conditions was examined through gel point measurements, floc average size determination, and ζ-potential analysis. The findings reveal that PEC solutions formed with a lower xylan mass ratio showed higher intrinsic viscosity, higher hydrodynamic size, higher z-potential, and a lower c*. This is due to the high molecular weight, charge, and gel-forming ability. All the analyzed solutions behave as a typical non-Newtonian shear-thinning fluid. The flocculation mechanisms under dynamic conditions showed that a very low dosage of PEC (between 2 and 6 mg PEC/g of fiber) was sufficient to produce flocculation. Under dynamic conditions, an increase in viscosity indicates flocculation at this low PEC dosage. Finally, under static conditions, maximum floc sizes were observed at the same PEC dosage where minimum gel points were reached. Higher PEC doses were required for CNF suspensions than for CMF suspensions.Fil: Bastida, Gabriela Adriana. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Tecnología Celulósica; ArgentinaFil: Tarrés, Quim. Universidad de Girona; EspañaFil: Aguado, Roberto. Universidad de Girona; EspañaFil: Delgado Aguilar, Marc. Universidad de Girona; EspañaFil: Zanuttini, Miguel Angel Mario. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Tecnología Celulósica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Galván, María Verónica. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Tecnología Celulósica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaMDPI2023-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/224991Bastida, Gabriela Adriana; Tarrés, Quim; Aguado, Roberto; Delgado Aguilar, Marc; Zanuttini, Miguel Angel Mario; et al.; Flocculation of Cellulose Microfiber and Nanofiber Induced by Chitosan–Xylan Complexes; MDPI; Nanomaterials; 13; 17; 8-2023; 1-152079-4991CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2079-4991/13/17/2420info:eu-repo/semantics/altIdentifier/doi/10.3390/nano13172420info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:10:19Zoai:ri.conicet.gov.ar:11336/224991instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:10:19.798CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Flocculation of Cellulose Microfiber and Nanofiber Induced by Chitosan–Xylan Complexes
title Flocculation of Cellulose Microfiber and Nanofiber Induced by Chitosan–Xylan Complexes
spellingShingle Flocculation of Cellulose Microfiber and Nanofiber Induced by Chitosan–Xylan Complexes
Bastida, Gabriela Adriana
CHITOSAN
FLOC SIZE
FLOCCULATION
GEL POINT
NANOCELLULOSE
VISCOSITY
XYLAN
title_short Flocculation of Cellulose Microfiber and Nanofiber Induced by Chitosan–Xylan Complexes
title_full Flocculation of Cellulose Microfiber and Nanofiber Induced by Chitosan–Xylan Complexes
title_fullStr Flocculation of Cellulose Microfiber and Nanofiber Induced by Chitosan–Xylan Complexes
title_full_unstemmed Flocculation of Cellulose Microfiber and Nanofiber Induced by Chitosan–Xylan Complexes
title_sort Flocculation of Cellulose Microfiber and Nanofiber Induced by Chitosan–Xylan Complexes
dc.creator.none.fl_str_mv Bastida, Gabriela Adriana
Tarrés, Quim
Aguado, Roberto
Delgado Aguilar, Marc
Zanuttini, Miguel Angel Mario
Galván, María Verónica
author Bastida, Gabriela Adriana
author_facet Bastida, Gabriela Adriana
Tarrés, Quim
Aguado, Roberto
Delgado Aguilar, Marc
Zanuttini, Miguel Angel Mario
Galván, María Verónica
author_role author
author2 Tarrés, Quim
Aguado, Roberto
Delgado Aguilar, Marc
Zanuttini, Miguel Angel Mario
Galván, María Verónica
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv CHITOSAN
FLOC SIZE
FLOCCULATION
GEL POINT
NANOCELLULOSE
VISCOSITY
XYLAN
topic CHITOSAN
FLOC SIZE
FLOCCULATION
GEL POINT
NANOCELLULOSE
VISCOSITY
XYLAN
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv This study aims to provide a comprehensive understanding of the key factors influencing the rheological behavior and the mechanisms of natural polyelectrolyte complexes (PECs) as flocculation agents for cellulose microfibers (CMFs) and nanofibers (CNFs). PECs were formed by combining two polyelectrolytes: xylan (Xyl) and chitosan (Ch), at different Xyl/Ch mass ratios: 60/40, 70/30, and 80/20. First, Xyl, Ch, and PEC solutions were characterized by measuring viscosity, critical concentration (c*), rheological parameter, ζ-potential, and hydrodynamic size. Then, the flocculation mechanisms of CMF and CNF suspensions with PECs under dynamic conditions were studied by measuring viscosity, while the flocculation under static conditions was examined through gel point measurements, floc average size determination, and ζ-potential analysis. The findings reveal that PEC solutions formed with a lower xylan mass ratio showed higher intrinsic viscosity, higher hydrodynamic size, higher z-potential, and a lower c*. This is due to the high molecular weight, charge, and gel-forming ability. All the analyzed solutions behave as a typical non-Newtonian shear-thinning fluid. The flocculation mechanisms under dynamic conditions showed that a very low dosage of PEC (between 2 and 6 mg PEC/g of fiber) was sufficient to produce flocculation. Under dynamic conditions, an increase in viscosity indicates flocculation at this low PEC dosage. Finally, under static conditions, maximum floc sizes were observed at the same PEC dosage where minimum gel points were reached. Higher PEC doses were required for CNF suspensions than for CMF suspensions.
Fil: Bastida, Gabriela Adriana. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Tecnología Celulósica; Argentina
Fil: Tarrés, Quim. Universidad de Girona; España
Fil: Aguado, Roberto. Universidad de Girona; España
Fil: Delgado Aguilar, Marc. Universidad de Girona; España
Fil: Zanuttini, Miguel Angel Mario. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Tecnología Celulósica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Fil: Galván, María Verónica. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Instituto de Tecnología Celulósica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
description This study aims to provide a comprehensive understanding of the key factors influencing the rheological behavior and the mechanisms of natural polyelectrolyte complexes (PECs) as flocculation agents for cellulose microfibers (CMFs) and nanofibers (CNFs). PECs were formed by combining two polyelectrolytes: xylan (Xyl) and chitosan (Ch), at different Xyl/Ch mass ratios: 60/40, 70/30, and 80/20. First, Xyl, Ch, and PEC solutions were characterized by measuring viscosity, critical concentration (c*), rheological parameter, ζ-potential, and hydrodynamic size. Then, the flocculation mechanisms of CMF and CNF suspensions with PECs under dynamic conditions were studied by measuring viscosity, while the flocculation under static conditions was examined through gel point measurements, floc average size determination, and ζ-potential analysis. The findings reveal that PEC solutions formed with a lower xylan mass ratio showed higher intrinsic viscosity, higher hydrodynamic size, higher z-potential, and a lower c*. This is due to the high molecular weight, charge, and gel-forming ability. All the analyzed solutions behave as a typical non-Newtonian shear-thinning fluid. The flocculation mechanisms under dynamic conditions showed that a very low dosage of PEC (between 2 and 6 mg PEC/g of fiber) was sufficient to produce flocculation. Under dynamic conditions, an increase in viscosity indicates flocculation at this low PEC dosage. Finally, under static conditions, maximum floc sizes were observed at the same PEC dosage where minimum gel points were reached. Higher PEC doses were required for CNF suspensions than for CMF suspensions.
publishDate 2023
dc.date.none.fl_str_mv 2023-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/224991
Bastida, Gabriela Adriana; Tarrés, Quim; Aguado, Roberto; Delgado Aguilar, Marc; Zanuttini, Miguel Angel Mario; et al.; Flocculation of Cellulose Microfiber and Nanofiber Induced by Chitosan–Xylan Complexes; MDPI; Nanomaterials; 13; 17; 8-2023; 1-15
2079-4991
CONICET Digital
CONICET
url http://hdl.handle.net/11336/224991
identifier_str_mv Bastida, Gabriela Adriana; Tarrés, Quim; Aguado, Roberto; Delgado Aguilar, Marc; Zanuttini, Miguel Angel Mario; et al.; Flocculation of Cellulose Microfiber and Nanofiber Induced by Chitosan–Xylan Complexes; MDPI; Nanomaterials; 13; 17; 8-2023; 1-15
2079-4991
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2079-4991/13/17/2420
info:eu-repo/semantics/altIdentifier/doi/10.3390/nano13172420
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270114405154816
score 13.13397