Critical Water Activity for the Preservation of Lactobacillus bulgaricus by Vacuum Drying
- Autores
- Tymczyszyn, Emma Elizabeth; Díaz, Rosario; Pataro, Andrea; Sandonato, Selva Sonia; Gomez Zavaglia, Andrea; Disalvo, Edgardo Anibal
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Lactobacillus delbrueckkii subsp. bulgaricus was dried under vacuum at different temperatures and its preservation evaluated following three parameters: lag time, percentage of membrane damage and z potential). Microorganisms were dehydrated at 30, 45 and 70 ºC in a vacuum centrifuge for different times. The water activity (aw) achieved at each time of drying for the temperatures of dehydration were correlated with the cell recovery evaluated by means of: a) kinetics of growth in milk after drying, as measure of the global damage; b) quantification of the membrane damage using the fluorescent dyes SYTO 9 and PI.; c) determination of changes in the superficial charges (z potential) as measured of the increase in the hydrophobic residues exposed in the bacterial surface after dehydration. The dyes are able to penetrate healthy bacterial cells. The difference is that SYTO 9 generally labels all bacteria in a population (those with intact and those with damaged membranes) whereas, PI penetrates only when bacterial membranes are damaged, causing a reduction in the SYTO 9 fluorescence when both dyes are present. These changes correlate well with the bacterial damage occurred during the dehydration process. The standardization of the vacuum drying process was done by applying the Page´s model by the determination of parameters k (drying rate constant) and n (drying time index) for different conditions. The fitting of the plot aw vs time of drying allows the determination of dehydration parameters in appropriate time-temperature ratios in which no cell damage occurs. The evaluation of three parameters of damage (lag time, percentage of membrane damage and z potential) allowed us to conclude that at the lowest temperature of dehydration, cell membrane damage is not crucial for the bacterial recovery after rehydration. The slow leak out of non-bound water occurs and the first target of damage is the as are the increase in the lag time and the changes in the zeta potential, as was observed for microorganisms dehydrated at 45 and 70 ºC for larger times.
Fil: Tymczyszyn, Emma Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Analítica y Fisicoquímica. Cátedra de Química General e Inorgánica; Argentina
Fil: Díaz, Rosario. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Analítica y Fisicoquímica. Cátedra de Química General e Inorgánica; Argentina
Fil: Pataro, Andrea. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Analítica y Fisicoquímica. Cátedra de Química General e Inorgánica; Argentina
Fil: Sandonato, Selva Sonia. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Analítica y Fisicoquímica. Cátedra de Química General e Inorgánica; Argentina
Fil: Gomez Zavaglia, Andrea. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Analítica y Fisicoquímica. Cátedra de Química General e Inorgánica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; Argentina
Fil: Disalvo, Edgardo Anibal. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Analítica y Fisicoquímica. Cátedra de Química General e Inorgánica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; Argentina - Materia
-
Vacuum drying
Water activity
Lactobacillus
Page's equation
Membrane damage - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/157502
Ver los metadatos del registro completo
id |
CONICETDig_2a1967b61005f5bd81c4c938e34ce0b1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/157502 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Critical Water Activity for the Preservation of Lactobacillus bulgaricus by Vacuum DryingTymczyszyn, Emma ElizabethDíaz, RosarioPataro, AndreaSandonato, Selva SoniaGomez Zavaglia, AndreaDisalvo, Edgardo AnibalVacuum dryingWater activityLactobacillusPage's equationMembrane damagehttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2Lactobacillus delbrueckkii subsp. bulgaricus was dried under vacuum at different temperatures and its preservation evaluated following three parameters: lag time, percentage of membrane damage and z potential). Microorganisms were dehydrated at 30, 45 and 70 ºC in a vacuum centrifuge for different times. The water activity (aw) achieved at each time of drying for the temperatures of dehydration were correlated with the cell recovery evaluated by means of: a) kinetics of growth in milk after drying, as measure of the global damage; b) quantification of the membrane damage using the fluorescent dyes SYTO 9 and PI.; c) determination of changes in the superficial charges (z potential) as measured of the increase in the hydrophobic residues exposed in the bacterial surface after dehydration. The dyes are able to penetrate healthy bacterial cells. The difference is that SYTO 9 generally labels all bacteria in a population (those with intact and those with damaged membranes) whereas, PI penetrates only when bacterial membranes are damaged, causing a reduction in the SYTO 9 fluorescence when both dyes are present. These changes correlate well with the bacterial damage occurred during the dehydration process. The standardization of the vacuum drying process was done by applying the Page´s model by the determination of parameters k (drying rate constant) and n (drying time index) for different conditions. The fitting of the plot aw vs time of drying allows the determination of dehydration parameters in appropriate time-temperature ratios in which no cell damage occurs. The evaluation of three parameters of damage (lag time, percentage of membrane damage and z potential) allowed us to conclude that at the lowest temperature of dehydration, cell membrane damage is not crucial for the bacterial recovery after rehydration. The slow leak out of non-bound water occurs and the first target of damage is the as are the increase in the lag time and the changes in the zeta potential, as was observed for microorganisms dehydrated at 45 and 70 ºC for larger times.Fil: Tymczyszyn, Emma Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Analítica y Fisicoquímica. Cátedra de Química General e Inorgánica; ArgentinaFil: Díaz, Rosario. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Analítica y Fisicoquímica. Cátedra de Química General e Inorgánica; ArgentinaFil: Pataro, Andrea. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Analítica y Fisicoquímica. Cátedra de Química General e Inorgánica; ArgentinaFil: Sandonato, Selva Sonia. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Analítica y Fisicoquímica. Cátedra de Química General e Inorgánica; ArgentinaFil: Gomez Zavaglia, Andrea. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Analítica y Fisicoquímica. Cátedra de Química General e Inorgánica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; ArgentinaFil: Disalvo, Edgardo Anibal. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Analítica y Fisicoquímica. Cátedra de Química General e Inorgánica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; ArgentinaElsevier Science2008-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/157502Tymczyszyn, Emma Elizabeth; Díaz, Rosario; Pataro, Andrea; Sandonato, Selva Sonia; Gomez Zavaglia, Andrea; et al.; Critical Water Activity for the Preservation of Lactobacillus bulgaricus by Vacuum Drying; Elsevier Science; International Journal of Food Microbiology; 128; 12-2008; 342-3470168-1605CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0168160508005199info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijfoodmicro.2008.09.009info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:12:59Zoai:ri.conicet.gov.ar:11336/157502instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:12:59.879CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Critical Water Activity for the Preservation of Lactobacillus bulgaricus by Vacuum Drying |
title |
Critical Water Activity for the Preservation of Lactobacillus bulgaricus by Vacuum Drying |
spellingShingle |
Critical Water Activity for the Preservation of Lactobacillus bulgaricus by Vacuum Drying Tymczyszyn, Emma Elizabeth Vacuum drying Water activity Lactobacillus Page's equation Membrane damage |
title_short |
Critical Water Activity for the Preservation of Lactobacillus bulgaricus by Vacuum Drying |
title_full |
Critical Water Activity for the Preservation of Lactobacillus bulgaricus by Vacuum Drying |
title_fullStr |
Critical Water Activity for the Preservation of Lactobacillus bulgaricus by Vacuum Drying |
title_full_unstemmed |
Critical Water Activity for the Preservation of Lactobacillus bulgaricus by Vacuum Drying |
title_sort |
Critical Water Activity for the Preservation of Lactobacillus bulgaricus by Vacuum Drying |
dc.creator.none.fl_str_mv |
Tymczyszyn, Emma Elizabeth Díaz, Rosario Pataro, Andrea Sandonato, Selva Sonia Gomez Zavaglia, Andrea Disalvo, Edgardo Anibal |
author |
Tymczyszyn, Emma Elizabeth |
author_facet |
Tymczyszyn, Emma Elizabeth Díaz, Rosario Pataro, Andrea Sandonato, Selva Sonia Gomez Zavaglia, Andrea Disalvo, Edgardo Anibal |
author_role |
author |
author2 |
Díaz, Rosario Pataro, Andrea Sandonato, Selva Sonia Gomez Zavaglia, Andrea Disalvo, Edgardo Anibal |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Vacuum drying Water activity Lactobacillus Page's equation Membrane damage |
topic |
Vacuum drying Water activity Lactobacillus Page's equation Membrane damage |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Lactobacillus delbrueckkii subsp. bulgaricus was dried under vacuum at different temperatures and its preservation evaluated following three parameters: lag time, percentage of membrane damage and z potential). Microorganisms were dehydrated at 30, 45 and 70 ºC in a vacuum centrifuge for different times. The water activity (aw) achieved at each time of drying for the temperatures of dehydration were correlated with the cell recovery evaluated by means of: a) kinetics of growth in milk after drying, as measure of the global damage; b) quantification of the membrane damage using the fluorescent dyes SYTO 9 and PI.; c) determination of changes in the superficial charges (z potential) as measured of the increase in the hydrophobic residues exposed in the bacterial surface after dehydration. The dyes are able to penetrate healthy bacterial cells. The difference is that SYTO 9 generally labels all bacteria in a population (those with intact and those with damaged membranes) whereas, PI penetrates only when bacterial membranes are damaged, causing a reduction in the SYTO 9 fluorescence when both dyes are present. These changes correlate well with the bacterial damage occurred during the dehydration process. The standardization of the vacuum drying process was done by applying the Page´s model by the determination of parameters k (drying rate constant) and n (drying time index) for different conditions. The fitting of the plot aw vs time of drying allows the determination of dehydration parameters in appropriate time-temperature ratios in which no cell damage occurs. The evaluation of three parameters of damage (lag time, percentage of membrane damage and z potential) allowed us to conclude that at the lowest temperature of dehydration, cell membrane damage is not crucial for the bacterial recovery after rehydration. The slow leak out of non-bound water occurs and the first target of damage is the as are the increase in the lag time and the changes in the zeta potential, as was observed for microorganisms dehydrated at 45 and 70 ºC for larger times. Fil: Tymczyszyn, Emma Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Analítica y Fisicoquímica. Cátedra de Química General e Inorgánica; Argentina Fil: Díaz, Rosario. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Analítica y Fisicoquímica. Cátedra de Química General e Inorgánica; Argentina Fil: Pataro, Andrea. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Analítica y Fisicoquímica. Cátedra de Química General e Inorgánica; Argentina Fil: Sandonato, Selva Sonia. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Analítica y Fisicoquímica. Cátedra de Química General e Inorgánica; Argentina Fil: Gomez Zavaglia, Andrea. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Analítica y Fisicoquímica. Cátedra de Química General e Inorgánica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; Argentina Fil: Disalvo, Edgardo Anibal. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Analítica y Fisicoquímica. Cátedra de Química General e Inorgánica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; Argentina |
description |
Lactobacillus delbrueckkii subsp. bulgaricus was dried under vacuum at different temperatures and its preservation evaluated following three parameters: lag time, percentage of membrane damage and z potential). Microorganisms were dehydrated at 30, 45 and 70 ºC in a vacuum centrifuge for different times. The water activity (aw) achieved at each time of drying for the temperatures of dehydration were correlated with the cell recovery evaluated by means of: a) kinetics of growth in milk after drying, as measure of the global damage; b) quantification of the membrane damage using the fluorescent dyes SYTO 9 and PI.; c) determination of changes in the superficial charges (z potential) as measured of the increase in the hydrophobic residues exposed in the bacterial surface after dehydration. The dyes are able to penetrate healthy bacterial cells. The difference is that SYTO 9 generally labels all bacteria in a population (those with intact and those with damaged membranes) whereas, PI penetrates only when bacterial membranes are damaged, causing a reduction in the SYTO 9 fluorescence when both dyes are present. These changes correlate well with the bacterial damage occurred during the dehydration process. The standardization of the vacuum drying process was done by applying the Page´s model by the determination of parameters k (drying rate constant) and n (drying time index) for different conditions. The fitting of the plot aw vs time of drying allows the determination of dehydration parameters in appropriate time-temperature ratios in which no cell damage occurs. The evaluation of three parameters of damage (lag time, percentage of membrane damage and z potential) allowed us to conclude that at the lowest temperature of dehydration, cell membrane damage is not crucial for the bacterial recovery after rehydration. The slow leak out of non-bound water occurs and the first target of damage is the as are the increase in the lag time and the changes in the zeta potential, as was observed for microorganisms dehydrated at 45 and 70 ºC for larger times. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/157502 Tymczyszyn, Emma Elizabeth; Díaz, Rosario; Pataro, Andrea; Sandonato, Selva Sonia; Gomez Zavaglia, Andrea; et al.; Critical Water Activity for the Preservation of Lactobacillus bulgaricus by Vacuum Drying; Elsevier Science; International Journal of Food Microbiology; 128; 12-2008; 342-347 0168-1605 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/157502 |
identifier_str_mv |
Tymczyszyn, Emma Elizabeth; Díaz, Rosario; Pataro, Andrea; Sandonato, Selva Sonia; Gomez Zavaglia, Andrea; et al.; Critical Water Activity for the Preservation of Lactobacillus bulgaricus by Vacuum Drying; Elsevier Science; International Journal of Food Microbiology; 128; 12-2008; 342-347 0168-1605 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0168160508005199 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijfoodmicro.2008.09.009 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980682279682048 |
score |
12.993085 |