Optimization of fluidized bed drying of Lactiplantibacillus plantarum grown in sustainable culture media for winemaking application

Autores
Navarro, Marina Edith; Morales, Manuel Angel; Brizuela, Natalia Soledad; Caballero, Adriana Catalina; Reyes Urrutia, Ramón Andrés; Vicente, Fausto; Semorile, Liliana Carmen; Bravo Ferrada, Barbara Mercedes; Tymczyszyn, Emma Elizabeth
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Lactic acid bacteria (LAB) play a key role in winemaking by driving malolactic fermentation, which enhances microbial stability and reduces wine acidity.To enable the large-scale development of LAB starter cultures, cost-effectivebiomass production and preservation methods are required. Traditionalpreservation techniques, such as freeze-drying, can be expensive and energyintensive. Therefore, this study explored fluidized bed drying as a sustainableand low-cost alternative for preserving Lactiplantibacillus plantarum UNQLp 11cultured in apple pomace (AP) and whey permeate (WP)-based media, withemphasis on maintaining malolactic activity after preservation. L. plantarumUNQLp 11 was cultivated in AP- and WP-based media and subjected to fluidizedbed drying at 45 ◦C and 60 ◦C. Drying times and culture conditions (pH,medium composition) were varied to assess their impact on cell viability. Afterdrying, the samples were stored for 12 months at 4 ◦C to evaluate long-termstability. Water activity (aw) was monitored and adjusted between 0.10 and 0.33.Malolactic activity was tested through winemaking trials using synthetic andMalbec wines, both with and without rehydration in DeMan-Rogosa-Sharpe(MRS) broth. Fluidized bed drying caused viability reductions of 3–5 log units,with survival rates influenced by medium composition, pH, and drying duration.Optimal results were achieved at 45 ◦C for 35 min, yielding final counts of8.3 log CFU/g in WP cultures and 7.0–7.4 log CFU/g in AP cultures. After 12months of storage at 4 ◦C, viability losses were limited to approximately 1 logunit when aw values were maintained between 0.10 and 0.33. In winemakingassays, WP-derived cultures preserved malolactic activity, consuming 70–100 %of malic acid in synthetic wine and up to 80 % in Malbec wine. AP culturesrequired rehydration to restore performance, reaching 75–100 % and 50–80 %malic acid consumption in synthetic and Malbec wines, respectively. The resultsdemonstrate that fluidized bed drying is a viable and energy-efcient alternativeto freeze-drying for preserving L. plantarum UNQLp 11. Cultures produced inWP medium exhibited superior viability and maintained malolactic functionalityafter long-term storage. However, AP-based cultures required rehydration to regain full activity. These findings highlight the potential of fluidized bed dryingfor sustainable LAB preservation in winemaking applications, although furtheroptimization of drying parameters and protective agents is needed to enhanceindustrial applicability.
Fil: Navarro, Marina Edith. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Microbiología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Morales, Manuel Angel. Universidad Nacional del Comahue. Facultad de Ciencias y Tecnologia de los Alimentos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
Fil: Brizuela, Natalia Soledad. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Microbiología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Caballero, Adriana Catalina. Universidad Nacional del Comahue. Facultad de Ciencias y Tecnologia de los Alimentos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
Fil: Reyes Urrutia, Ramón Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina. Universidad Nacional del Comahue. Facultad de Ciencias y Tecnologia de los Alimentos; Argentina
Fil: Vicente, Fausto. Universidad Nacional del Comahue. Facultad de Ciencias y Tecnologia de los Alimentos; Argentina
Fil: Semorile, Liliana Carmen. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Microbiología Molecular; Argentina
Fil: Bravo Ferrada, Barbara Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Microbiología Molecular; Argentina
Fil: Tymczyszyn, Emma Elizabeth. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Microbiología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Lactiplantibacillus plantarum
apple pomace
whey permeate
malolactic fermentation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/278983

id CONICETDig_2a15ee8783fe39e85faa2705072e295d
oai_identifier_str oai:ri.conicet.gov.ar:11336/278983
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Optimization of fluidized bed drying of Lactiplantibacillus plantarum grown in sustainable culture media for winemaking applicationNavarro, Marina EdithMorales, Manuel AngelBrizuela, Natalia SoledadCaballero, Adriana CatalinaReyes Urrutia, Ramón AndrésVicente, FaustoSemorile, Liliana CarmenBravo Ferrada, Barbara MercedesTymczyszyn, Emma ElizabethLactiplantibacillus plantarumapple pomacewhey permeatemalolactic fermentationhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2Lactic acid bacteria (LAB) play a key role in winemaking by driving malolactic fermentation, which enhances microbial stability and reduces wine acidity.To enable the large-scale development of LAB starter cultures, cost-effectivebiomass production and preservation methods are required. Traditionalpreservation techniques, such as freeze-drying, can be expensive and energyintensive. Therefore, this study explored fluidized bed drying as a sustainableand low-cost alternative for preserving Lactiplantibacillus plantarum UNQLp 11cultured in apple pomace (AP) and whey permeate (WP)-based media, withemphasis on maintaining malolactic activity after preservation. L. plantarumUNQLp 11 was cultivated in AP- and WP-based media and subjected to fluidizedbed drying at 45 ◦C and 60 ◦C. Drying times and culture conditions (pH,medium composition) were varied to assess their impact on cell viability. Afterdrying, the samples were stored for 12 months at 4 ◦C to evaluate long-termstability. Water activity (aw) was monitored and adjusted between 0.10 and 0.33.Malolactic activity was tested through winemaking trials using synthetic andMalbec wines, both with and without rehydration in DeMan-Rogosa-Sharpe(MRS) broth. Fluidized bed drying caused viability reductions of 3–5 log units,with survival rates influenced by medium composition, pH, and drying duration.Optimal results were achieved at 45 ◦C for 35 min, yielding final counts of8.3 log CFU/g in WP cultures and 7.0–7.4 log CFU/g in AP cultures. After 12months of storage at 4 ◦C, viability losses were limited to approximately 1 logunit when aw values were maintained between 0.10 and 0.33. In winemakingassays, WP-derived cultures preserved malolactic activity, consuming 70–100 %of malic acid in synthetic wine and up to 80 % in Malbec wine. AP culturesrequired rehydration to restore performance, reaching 75–100 % and 50–80 %malic acid consumption in synthetic and Malbec wines, respectively. The resultsdemonstrate that fluidized bed drying is a viable and energy-efcient alternativeto freeze-drying for preserving L. plantarum UNQLp 11. Cultures produced inWP medium exhibited superior viability and maintained malolactic functionalityafter long-term storage. However, AP-based cultures required rehydration to regain full activity. These findings highlight the potential of fluidized bed dryingfor sustainable LAB preservation in winemaking applications, although furtheroptimization of drying parameters and protective agents is needed to enhanceindustrial applicability.Fil: Navarro, Marina Edith. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Microbiología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Morales, Manuel Angel. Universidad Nacional del Comahue. Facultad de Ciencias y Tecnologia de los Alimentos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; ArgentinaFil: Brizuela, Natalia Soledad. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Microbiología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Caballero, Adriana Catalina. Universidad Nacional del Comahue. Facultad de Ciencias y Tecnologia de los Alimentos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; ArgentinaFil: Reyes Urrutia, Ramón Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina. Universidad Nacional del Comahue. Facultad de Ciencias y Tecnologia de los Alimentos; ArgentinaFil: Vicente, Fausto. Universidad Nacional del Comahue. Facultad de Ciencias y Tecnologia de los Alimentos; ArgentinaFil: Semorile, Liliana Carmen. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Microbiología Molecular; ArgentinaFil: Bravo Ferrada, Barbara Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Microbiología Molecular; ArgentinaFil: Tymczyszyn, Emma Elizabeth. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Microbiología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFrontiers Media2025-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/278983Navarro, Marina Edith; Morales, Manuel Angel; Brizuela, Natalia Soledad; Caballero, Adriana Catalina; Reyes Urrutia, Ramón Andrés; et al.; Optimization of fluidized bed drying of Lactiplantibacillus plantarum grown in sustainable culture media for winemaking application; Frontiers Media; Frontiers in Microbiology; 16; 11-2025; 1-131664-302XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fmicb.2025.1695290/fullinfo:eu-repo/semantics/altIdentifier/doi/10.3389/fmicb.2025.1695290info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2026-02-06T13:44:36Zoai:ri.conicet.gov.ar:11336/278983instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982026-02-06 13:44:36.52CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Optimization of fluidized bed drying of Lactiplantibacillus plantarum grown in sustainable culture media for winemaking application
title Optimization of fluidized bed drying of Lactiplantibacillus plantarum grown in sustainable culture media for winemaking application
spellingShingle Optimization of fluidized bed drying of Lactiplantibacillus plantarum grown in sustainable culture media for winemaking application
Navarro, Marina Edith
Lactiplantibacillus plantarum
apple pomace
whey permeate
malolactic fermentation
title_short Optimization of fluidized bed drying of Lactiplantibacillus plantarum grown in sustainable culture media for winemaking application
title_full Optimization of fluidized bed drying of Lactiplantibacillus plantarum grown in sustainable culture media for winemaking application
title_fullStr Optimization of fluidized bed drying of Lactiplantibacillus plantarum grown in sustainable culture media for winemaking application
title_full_unstemmed Optimization of fluidized bed drying of Lactiplantibacillus plantarum grown in sustainable culture media for winemaking application
title_sort Optimization of fluidized bed drying of Lactiplantibacillus plantarum grown in sustainable culture media for winemaking application
dc.creator.none.fl_str_mv Navarro, Marina Edith
Morales, Manuel Angel
Brizuela, Natalia Soledad
Caballero, Adriana Catalina
Reyes Urrutia, Ramón Andrés
Vicente, Fausto
Semorile, Liliana Carmen
Bravo Ferrada, Barbara Mercedes
Tymczyszyn, Emma Elizabeth
author Navarro, Marina Edith
author_facet Navarro, Marina Edith
Morales, Manuel Angel
Brizuela, Natalia Soledad
Caballero, Adriana Catalina
Reyes Urrutia, Ramón Andrés
Vicente, Fausto
Semorile, Liliana Carmen
Bravo Ferrada, Barbara Mercedes
Tymczyszyn, Emma Elizabeth
author_role author
author2 Morales, Manuel Angel
Brizuela, Natalia Soledad
Caballero, Adriana Catalina
Reyes Urrutia, Ramón Andrés
Vicente, Fausto
Semorile, Liliana Carmen
Bravo Ferrada, Barbara Mercedes
Tymczyszyn, Emma Elizabeth
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Lactiplantibacillus plantarum
apple pomace
whey permeate
malolactic fermentation
topic Lactiplantibacillus plantarum
apple pomace
whey permeate
malolactic fermentation
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.11
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Lactic acid bacteria (LAB) play a key role in winemaking by driving malolactic fermentation, which enhances microbial stability and reduces wine acidity.To enable the large-scale development of LAB starter cultures, cost-effectivebiomass production and preservation methods are required. Traditionalpreservation techniques, such as freeze-drying, can be expensive and energyintensive. Therefore, this study explored fluidized bed drying as a sustainableand low-cost alternative for preserving Lactiplantibacillus plantarum UNQLp 11cultured in apple pomace (AP) and whey permeate (WP)-based media, withemphasis on maintaining malolactic activity after preservation. L. plantarumUNQLp 11 was cultivated in AP- and WP-based media and subjected to fluidizedbed drying at 45 ◦C and 60 ◦C. Drying times and culture conditions (pH,medium composition) were varied to assess their impact on cell viability. Afterdrying, the samples were stored for 12 months at 4 ◦C to evaluate long-termstability. Water activity (aw) was monitored and adjusted between 0.10 and 0.33.Malolactic activity was tested through winemaking trials using synthetic andMalbec wines, both with and without rehydration in DeMan-Rogosa-Sharpe(MRS) broth. Fluidized bed drying caused viability reductions of 3–5 log units,with survival rates influenced by medium composition, pH, and drying duration.Optimal results were achieved at 45 ◦C for 35 min, yielding final counts of8.3 log CFU/g in WP cultures and 7.0–7.4 log CFU/g in AP cultures. After 12months of storage at 4 ◦C, viability losses were limited to approximately 1 logunit when aw values were maintained between 0.10 and 0.33. In winemakingassays, WP-derived cultures preserved malolactic activity, consuming 70–100 %of malic acid in synthetic wine and up to 80 % in Malbec wine. AP culturesrequired rehydration to restore performance, reaching 75–100 % and 50–80 %malic acid consumption in synthetic and Malbec wines, respectively. The resultsdemonstrate that fluidized bed drying is a viable and energy-efcient alternativeto freeze-drying for preserving L. plantarum UNQLp 11. Cultures produced inWP medium exhibited superior viability and maintained malolactic functionalityafter long-term storage. However, AP-based cultures required rehydration to regain full activity. These findings highlight the potential of fluidized bed dryingfor sustainable LAB preservation in winemaking applications, although furtheroptimization of drying parameters and protective agents is needed to enhanceindustrial applicability.
Fil: Navarro, Marina Edith. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Microbiología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Morales, Manuel Angel. Universidad Nacional del Comahue. Facultad de Ciencias y Tecnologia de los Alimentos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
Fil: Brizuela, Natalia Soledad. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Microbiología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Caballero, Adriana Catalina. Universidad Nacional del Comahue. Facultad de Ciencias y Tecnologia de los Alimentos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
Fil: Reyes Urrutia, Ramón Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina. Universidad Nacional del Comahue. Facultad de Ciencias y Tecnologia de los Alimentos; Argentina
Fil: Vicente, Fausto. Universidad Nacional del Comahue. Facultad de Ciencias y Tecnologia de los Alimentos; Argentina
Fil: Semorile, Liliana Carmen. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Microbiología Molecular; Argentina
Fil: Bravo Ferrada, Barbara Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Microbiología Molecular; Argentina
Fil: Tymczyszyn, Emma Elizabeth. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Microbiología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Lactic acid bacteria (LAB) play a key role in winemaking by driving malolactic fermentation, which enhances microbial stability and reduces wine acidity.To enable the large-scale development of LAB starter cultures, cost-effectivebiomass production and preservation methods are required. Traditionalpreservation techniques, such as freeze-drying, can be expensive and energyintensive. Therefore, this study explored fluidized bed drying as a sustainableand low-cost alternative for preserving Lactiplantibacillus plantarum UNQLp 11cultured in apple pomace (AP) and whey permeate (WP)-based media, withemphasis on maintaining malolactic activity after preservation. L. plantarumUNQLp 11 was cultivated in AP- and WP-based media and subjected to fluidizedbed drying at 45 ◦C and 60 ◦C. Drying times and culture conditions (pH,medium composition) were varied to assess their impact on cell viability. Afterdrying, the samples were stored for 12 months at 4 ◦C to evaluate long-termstability. Water activity (aw) was monitored and adjusted between 0.10 and 0.33.Malolactic activity was tested through winemaking trials using synthetic andMalbec wines, both with and without rehydration in DeMan-Rogosa-Sharpe(MRS) broth. Fluidized bed drying caused viability reductions of 3–5 log units,with survival rates influenced by medium composition, pH, and drying duration.Optimal results were achieved at 45 ◦C for 35 min, yielding final counts of8.3 log CFU/g in WP cultures and 7.0–7.4 log CFU/g in AP cultures. After 12months of storage at 4 ◦C, viability losses were limited to approximately 1 logunit when aw values were maintained between 0.10 and 0.33. In winemakingassays, WP-derived cultures preserved malolactic activity, consuming 70–100 %of malic acid in synthetic wine and up to 80 % in Malbec wine. AP culturesrequired rehydration to restore performance, reaching 75–100 % and 50–80 %malic acid consumption in synthetic and Malbec wines, respectively. The resultsdemonstrate that fluidized bed drying is a viable and energy-efcient alternativeto freeze-drying for preserving L. plantarum UNQLp 11. Cultures produced inWP medium exhibited superior viability and maintained malolactic functionalityafter long-term storage. However, AP-based cultures required rehydration to regain full activity. These findings highlight the potential of fluidized bed dryingfor sustainable LAB preservation in winemaking applications, although furtheroptimization of drying parameters and protective agents is needed to enhanceindustrial applicability.
publishDate 2025
dc.date.none.fl_str_mv 2025-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/278983
Navarro, Marina Edith; Morales, Manuel Angel; Brizuela, Natalia Soledad; Caballero, Adriana Catalina; Reyes Urrutia, Ramón Andrés; et al.; Optimization of fluidized bed drying of Lactiplantibacillus plantarum grown in sustainable culture media for winemaking application; Frontiers Media; Frontiers in Microbiology; 16; 11-2025; 1-13
1664-302X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/278983
identifier_str_mv Navarro, Marina Edith; Morales, Manuel Angel; Brizuela, Natalia Soledad; Caballero, Adriana Catalina; Reyes Urrutia, Ramón Andrés; et al.; Optimization of fluidized bed drying of Lactiplantibacillus plantarum grown in sustainable culture media for winemaking application; Frontiers Media; Frontiers in Microbiology; 16; 11-2025; 1-13
1664-302X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fmicb.2025.1695290/full
info:eu-repo/semantics/altIdentifier/doi/10.3389/fmicb.2025.1695290
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Frontiers Media
publisher.none.fl_str_mv Frontiers Media
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1856403645530112000
score 12.595271