Optimization of fluidized bed drying of Lactiplantibacillus plantarum grown in sustainable culture media for winemaking application
- Autores
- Navarro, Marina Edith; Morales, Manuel Angel; Brizuela, Natalia Soledad; Caballero, Adriana Catalina; Reyes Urrutia, Ramón Andrés; Vicente, Fausto; Semorile, Liliana Carmen; Bravo Ferrada, Barbara Mercedes; Tymczyszyn, Emma Elizabeth
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Lactic acid bacteria (LAB) play a key role in winemaking by driving malolactic fermentation, which enhances microbial stability and reduces wine acidity.To enable the large-scale development of LAB starter cultures, cost-effectivebiomass production and preservation methods are required. Traditionalpreservation techniques, such as freeze-drying, can be expensive and energyintensive. Therefore, this study explored fluidized bed drying as a sustainableand low-cost alternative for preserving Lactiplantibacillus plantarum UNQLp 11cultured in apple pomace (AP) and whey permeate (WP)-based media, withemphasis on maintaining malolactic activity after preservation. L. plantarumUNQLp 11 was cultivated in AP- and WP-based media and subjected to fluidizedbed drying at 45 ◦C and 60 ◦C. Drying times and culture conditions (pH,medium composition) were varied to assess their impact on cell viability. Afterdrying, the samples were stored for 12 months at 4 ◦C to evaluate long-termstability. Water activity (aw) was monitored and adjusted between 0.10 and 0.33.Malolactic activity was tested through winemaking trials using synthetic andMalbec wines, both with and without rehydration in DeMan-Rogosa-Sharpe(MRS) broth. Fluidized bed drying caused viability reductions of 3–5 log units,with survival rates influenced by medium composition, pH, and drying duration.Optimal results were achieved at 45 ◦C for 35 min, yielding final counts of8.3 log CFU/g in WP cultures and 7.0–7.4 log CFU/g in AP cultures. After 12months of storage at 4 ◦C, viability losses were limited to approximately 1 logunit when aw values were maintained between 0.10 and 0.33. In winemakingassays, WP-derived cultures preserved malolactic activity, consuming 70–100 %of malic acid in synthetic wine and up to 80 % in Malbec wine. AP culturesrequired rehydration to restore performance, reaching 75–100 % and 50–80 %malic acid consumption in synthetic and Malbec wines, respectively. The resultsdemonstrate that fluidized bed drying is a viable and energy-efcient alternativeto freeze-drying for preserving L. plantarum UNQLp 11. Cultures produced inWP medium exhibited superior viability and maintained malolactic functionalityafter long-term storage. However, AP-based cultures required rehydration to regain full activity. These findings highlight the potential of fluidized bed dryingfor sustainable LAB preservation in winemaking applications, although furtheroptimization of drying parameters and protective agents is needed to enhanceindustrial applicability.
Fil: Navarro, Marina Edith. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Microbiología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Morales, Manuel Angel. Universidad Nacional del Comahue. Facultad de Ciencias y Tecnologia de los Alimentos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
Fil: Brizuela, Natalia Soledad. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Microbiología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Caballero, Adriana Catalina. Universidad Nacional del Comahue. Facultad de Ciencias y Tecnologia de los Alimentos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
Fil: Reyes Urrutia, Ramón Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina. Universidad Nacional del Comahue. Facultad de Ciencias y Tecnologia de los Alimentos; Argentina
Fil: Vicente, Fausto. Universidad Nacional del Comahue. Facultad de Ciencias y Tecnologia de los Alimentos; Argentina
Fil: Semorile, Liliana Carmen. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Microbiología Molecular; Argentina
Fil: Bravo Ferrada, Barbara Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Microbiología Molecular; Argentina
Fil: Tymczyszyn, Emma Elizabeth. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Microbiología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Lactiplantibacillus plantarum
apple pomace
whey permeate
malolactic fermentation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/278983
Ver los metadatos del registro completo
| id |
CONICETDig_2a15ee8783fe39e85faa2705072e295d |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/278983 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Optimization of fluidized bed drying of Lactiplantibacillus plantarum grown in sustainable culture media for winemaking applicationNavarro, Marina EdithMorales, Manuel AngelBrizuela, Natalia SoledadCaballero, Adriana CatalinaReyes Urrutia, Ramón AndrésVicente, FaustoSemorile, Liliana CarmenBravo Ferrada, Barbara MercedesTymczyszyn, Emma ElizabethLactiplantibacillus plantarumapple pomacewhey permeatemalolactic fermentationhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2Lactic acid bacteria (LAB) play a key role in winemaking by driving malolactic fermentation, which enhances microbial stability and reduces wine acidity.To enable the large-scale development of LAB starter cultures, cost-effectivebiomass production and preservation methods are required. Traditionalpreservation techniques, such as freeze-drying, can be expensive and energyintensive. Therefore, this study explored fluidized bed drying as a sustainableand low-cost alternative for preserving Lactiplantibacillus plantarum UNQLp 11cultured in apple pomace (AP) and whey permeate (WP)-based media, withemphasis on maintaining malolactic activity after preservation. L. plantarumUNQLp 11 was cultivated in AP- and WP-based media and subjected to fluidizedbed drying at 45 ◦C and 60 ◦C. Drying times and culture conditions (pH,medium composition) were varied to assess their impact on cell viability. Afterdrying, the samples were stored for 12 months at 4 ◦C to evaluate long-termstability. Water activity (aw) was monitored and adjusted between 0.10 and 0.33.Malolactic activity was tested through winemaking trials using synthetic andMalbec wines, both with and without rehydration in DeMan-Rogosa-Sharpe(MRS) broth. Fluidized bed drying caused viability reductions of 3–5 log units,with survival rates influenced by medium composition, pH, and drying duration.Optimal results were achieved at 45 ◦C for 35 min, yielding final counts of8.3 log CFU/g in WP cultures and 7.0–7.4 log CFU/g in AP cultures. After 12months of storage at 4 ◦C, viability losses were limited to approximately 1 logunit when aw values were maintained between 0.10 and 0.33. In winemakingassays, WP-derived cultures preserved malolactic activity, consuming 70–100 %of malic acid in synthetic wine and up to 80 % in Malbec wine. AP culturesrequired rehydration to restore performance, reaching 75–100 % and 50–80 %malic acid consumption in synthetic and Malbec wines, respectively. The resultsdemonstrate that fluidized bed drying is a viable and energy-efcient alternativeto freeze-drying for preserving L. plantarum UNQLp 11. Cultures produced inWP medium exhibited superior viability and maintained malolactic functionalityafter long-term storage. However, AP-based cultures required rehydration to regain full activity. These findings highlight the potential of fluidized bed dryingfor sustainable LAB preservation in winemaking applications, although furtheroptimization of drying parameters and protective agents is needed to enhanceindustrial applicability.Fil: Navarro, Marina Edith. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Microbiología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Morales, Manuel Angel. Universidad Nacional del Comahue. Facultad de Ciencias y Tecnologia de los Alimentos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; ArgentinaFil: Brizuela, Natalia Soledad. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Microbiología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Caballero, Adriana Catalina. Universidad Nacional del Comahue. Facultad de Ciencias y Tecnologia de los Alimentos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; ArgentinaFil: Reyes Urrutia, Ramón Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina. Universidad Nacional del Comahue. Facultad de Ciencias y Tecnologia de los Alimentos; ArgentinaFil: Vicente, Fausto. Universidad Nacional del Comahue. Facultad de Ciencias y Tecnologia de los Alimentos; ArgentinaFil: Semorile, Liliana Carmen. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Microbiología Molecular; ArgentinaFil: Bravo Ferrada, Barbara Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Microbiología Molecular; ArgentinaFil: Tymczyszyn, Emma Elizabeth. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Microbiología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFrontiers Media2025-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/278983Navarro, Marina Edith; Morales, Manuel Angel; Brizuela, Natalia Soledad; Caballero, Adriana Catalina; Reyes Urrutia, Ramón Andrés; et al.; Optimization of fluidized bed drying of Lactiplantibacillus plantarum grown in sustainable culture media for winemaking application; Frontiers Media; Frontiers in Microbiology; 16; 11-2025; 1-131664-302XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fmicb.2025.1695290/fullinfo:eu-repo/semantics/altIdentifier/doi/10.3389/fmicb.2025.1695290info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2026-02-06T13:44:36Zoai:ri.conicet.gov.ar:11336/278983instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982026-02-06 13:44:36.52CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Optimization of fluidized bed drying of Lactiplantibacillus plantarum grown in sustainable culture media for winemaking application |
| title |
Optimization of fluidized bed drying of Lactiplantibacillus plantarum grown in sustainable culture media for winemaking application |
| spellingShingle |
Optimization of fluidized bed drying of Lactiplantibacillus plantarum grown in sustainable culture media for winemaking application Navarro, Marina Edith Lactiplantibacillus plantarum apple pomace whey permeate malolactic fermentation |
| title_short |
Optimization of fluidized bed drying of Lactiplantibacillus plantarum grown in sustainable culture media for winemaking application |
| title_full |
Optimization of fluidized bed drying of Lactiplantibacillus plantarum grown in sustainable culture media for winemaking application |
| title_fullStr |
Optimization of fluidized bed drying of Lactiplantibacillus plantarum grown in sustainable culture media for winemaking application |
| title_full_unstemmed |
Optimization of fluidized bed drying of Lactiplantibacillus plantarum grown in sustainable culture media for winemaking application |
| title_sort |
Optimization of fluidized bed drying of Lactiplantibacillus plantarum grown in sustainable culture media for winemaking application |
| dc.creator.none.fl_str_mv |
Navarro, Marina Edith Morales, Manuel Angel Brizuela, Natalia Soledad Caballero, Adriana Catalina Reyes Urrutia, Ramón Andrés Vicente, Fausto Semorile, Liliana Carmen Bravo Ferrada, Barbara Mercedes Tymczyszyn, Emma Elizabeth |
| author |
Navarro, Marina Edith |
| author_facet |
Navarro, Marina Edith Morales, Manuel Angel Brizuela, Natalia Soledad Caballero, Adriana Catalina Reyes Urrutia, Ramón Andrés Vicente, Fausto Semorile, Liliana Carmen Bravo Ferrada, Barbara Mercedes Tymczyszyn, Emma Elizabeth |
| author_role |
author |
| author2 |
Morales, Manuel Angel Brizuela, Natalia Soledad Caballero, Adriana Catalina Reyes Urrutia, Ramón Andrés Vicente, Fausto Semorile, Liliana Carmen Bravo Ferrada, Barbara Mercedes Tymczyszyn, Emma Elizabeth |
| author2_role |
author author author author author author author author |
| dc.subject.none.fl_str_mv |
Lactiplantibacillus plantarum apple pomace whey permeate malolactic fermentation |
| topic |
Lactiplantibacillus plantarum apple pomace whey permeate malolactic fermentation |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
Lactic acid bacteria (LAB) play a key role in winemaking by driving malolactic fermentation, which enhances microbial stability and reduces wine acidity.To enable the large-scale development of LAB starter cultures, cost-effectivebiomass production and preservation methods are required. Traditionalpreservation techniques, such as freeze-drying, can be expensive and energyintensive. Therefore, this study explored fluidized bed drying as a sustainableand low-cost alternative for preserving Lactiplantibacillus plantarum UNQLp 11cultured in apple pomace (AP) and whey permeate (WP)-based media, withemphasis on maintaining malolactic activity after preservation. L. plantarumUNQLp 11 was cultivated in AP- and WP-based media and subjected to fluidizedbed drying at 45 ◦C and 60 ◦C. Drying times and culture conditions (pH,medium composition) were varied to assess their impact on cell viability. Afterdrying, the samples were stored for 12 months at 4 ◦C to evaluate long-termstability. Water activity (aw) was monitored and adjusted between 0.10 and 0.33.Malolactic activity was tested through winemaking trials using synthetic andMalbec wines, both with and without rehydration in DeMan-Rogosa-Sharpe(MRS) broth. Fluidized bed drying caused viability reductions of 3–5 log units,with survival rates influenced by medium composition, pH, and drying duration.Optimal results were achieved at 45 ◦C for 35 min, yielding final counts of8.3 log CFU/g in WP cultures and 7.0–7.4 log CFU/g in AP cultures. After 12months of storage at 4 ◦C, viability losses were limited to approximately 1 logunit when aw values were maintained between 0.10 and 0.33. In winemakingassays, WP-derived cultures preserved malolactic activity, consuming 70–100 %of malic acid in synthetic wine and up to 80 % in Malbec wine. AP culturesrequired rehydration to restore performance, reaching 75–100 % and 50–80 %malic acid consumption in synthetic and Malbec wines, respectively. The resultsdemonstrate that fluidized bed drying is a viable and energy-efcient alternativeto freeze-drying for preserving L. plantarum UNQLp 11. Cultures produced inWP medium exhibited superior viability and maintained malolactic functionalityafter long-term storage. However, AP-based cultures required rehydration to regain full activity. These findings highlight the potential of fluidized bed dryingfor sustainable LAB preservation in winemaking applications, although furtheroptimization of drying parameters and protective agents is needed to enhanceindustrial applicability. Fil: Navarro, Marina Edith. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Microbiología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Morales, Manuel Angel. Universidad Nacional del Comahue. Facultad de Ciencias y Tecnologia de los Alimentos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina Fil: Brizuela, Natalia Soledad. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Microbiología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Caballero, Adriana Catalina. Universidad Nacional del Comahue. Facultad de Ciencias y Tecnologia de los Alimentos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina Fil: Reyes Urrutia, Ramón Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina. Universidad Nacional del Comahue. Facultad de Ciencias y Tecnologia de los Alimentos; Argentina Fil: Vicente, Fausto. Universidad Nacional del Comahue. Facultad de Ciencias y Tecnologia de los Alimentos; Argentina Fil: Semorile, Liliana Carmen. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Microbiología Molecular; Argentina Fil: Bravo Ferrada, Barbara Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Microbiología Molecular; Argentina Fil: Tymczyszyn, Emma Elizabeth. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Microbiología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
| description |
Lactic acid bacteria (LAB) play a key role in winemaking by driving malolactic fermentation, which enhances microbial stability and reduces wine acidity.To enable the large-scale development of LAB starter cultures, cost-effectivebiomass production and preservation methods are required. Traditionalpreservation techniques, such as freeze-drying, can be expensive and energyintensive. Therefore, this study explored fluidized bed drying as a sustainableand low-cost alternative for preserving Lactiplantibacillus plantarum UNQLp 11cultured in apple pomace (AP) and whey permeate (WP)-based media, withemphasis on maintaining malolactic activity after preservation. L. plantarumUNQLp 11 was cultivated in AP- and WP-based media and subjected to fluidizedbed drying at 45 ◦C and 60 ◦C. Drying times and culture conditions (pH,medium composition) were varied to assess their impact on cell viability. Afterdrying, the samples were stored for 12 months at 4 ◦C to evaluate long-termstability. Water activity (aw) was monitored and adjusted between 0.10 and 0.33.Malolactic activity was tested through winemaking trials using synthetic andMalbec wines, both with and without rehydration in DeMan-Rogosa-Sharpe(MRS) broth. Fluidized bed drying caused viability reductions of 3–5 log units,with survival rates influenced by medium composition, pH, and drying duration.Optimal results were achieved at 45 ◦C for 35 min, yielding final counts of8.3 log CFU/g in WP cultures and 7.0–7.4 log CFU/g in AP cultures. After 12months of storage at 4 ◦C, viability losses were limited to approximately 1 logunit when aw values were maintained between 0.10 and 0.33. In winemakingassays, WP-derived cultures preserved malolactic activity, consuming 70–100 %of malic acid in synthetic wine and up to 80 % in Malbec wine. AP culturesrequired rehydration to restore performance, reaching 75–100 % and 50–80 %malic acid consumption in synthetic and Malbec wines, respectively. The resultsdemonstrate that fluidized bed drying is a viable and energy-efcient alternativeto freeze-drying for preserving L. plantarum UNQLp 11. Cultures produced inWP medium exhibited superior viability and maintained malolactic functionalityafter long-term storage. However, AP-based cultures required rehydration to regain full activity. These findings highlight the potential of fluidized bed dryingfor sustainable LAB preservation in winemaking applications, although furtheroptimization of drying parameters and protective agents is needed to enhanceindustrial applicability. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-11 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/278983 Navarro, Marina Edith; Morales, Manuel Angel; Brizuela, Natalia Soledad; Caballero, Adriana Catalina; Reyes Urrutia, Ramón Andrés; et al.; Optimization of fluidized bed drying of Lactiplantibacillus plantarum grown in sustainable culture media for winemaking application; Frontiers Media; Frontiers in Microbiology; 16; 11-2025; 1-13 1664-302X CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/278983 |
| identifier_str_mv |
Navarro, Marina Edith; Morales, Manuel Angel; Brizuela, Natalia Soledad; Caballero, Adriana Catalina; Reyes Urrutia, Ramón Andrés; et al.; Optimization of fluidized bed drying of Lactiplantibacillus plantarum grown in sustainable culture media for winemaking application; Frontiers Media; Frontiers in Microbiology; 16; 11-2025; 1-13 1664-302X CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fmicb.2025.1695290/full info:eu-repo/semantics/altIdentifier/doi/10.3389/fmicb.2025.1695290 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Frontiers Media |
| publisher.none.fl_str_mv |
Frontiers Media |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1856403645530112000 |
| score |
12.595271 |