Sugar sweetened beverages attributable disease burden and the potential impact of policy interventions: a systematic review of epidemiological and decision models
- Autores
- Alcaraz, Andrea; Pichón-riviere, Andres; Palacios, Alfredo; Bardach, Ariel Esteban; Balan, Dario Javier; Perelli, Lucas; Augustovski, Federico Ariel; Ciapponi, Agustín
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Background: Around 184,000 deaths per year could be attributable to sugar-sweetened beverages (SSBs) consumption worldwide. Epidemiological and decision models are important tools to estimate disease burden. The purpose of this study was to identify models to assess the burden of diseases attributable to SSBs consumption or the potential impact of health interventions. Methods: We carried out a systematic review and literature search up to August 2018. Pairs of reviewers independently selected, extracted, and assessed the quality of the included studies through an exhaustive description of each model’s features. Discrepancies were solved by consensus. The inclusion criteria were epidemiological or decision models evaluating SSBs health interventions or policies, and descriptive SSBs studies of decision models. Studies published before 2003, cost of illness studies and economic evaluations based on individual patient data were excluded. Results: We identified a total of 2766 references. Out of the 40 included studies, 45% were models specifically developed to address SSBs, 82.5% were conducted in high-income countries and 57.5% considered a health system perspective. The most common model’s outcomes were obesity/overweight (82.5%), diabetes (72.5%), cardiovascular disease (60%), mortality (52.5%), direct medical costs (57.35%), and healthy years -DALYs/QALYs- (40%) attributable to SSBs. 67.5% of the studies modelled the effect of SSBs on the outcomes either entirely through BMI or through BMI plus diabetes independently. Models were usually populated with inputs from national surveys -such us obesity prevalence, SSBs consumption-; and vital statistics (67.5%). Only 55% reported results by gender and 40% included children; 30% presented results by income level, and 25% by selected vulnerable groups. Most of the models evaluated at least one policy intervention to reduce SSBs consumption (92.5%), taxes being the most frequent strategy (75%). Conclusions: There is a wide range of modelling approaches of different complexity and information requirements to evaluate the burden of disease attributable to SSBs. Most of them take into account the impact on obesity, diabetes and cardiovascular disease, mortality, and economic impact. Incorporating these tools to different countries could result in useful information for decision makers and the general population to promote a deeper implementation of policies to reduce SSBs consumption.
Fil: Alcaraz, Andrea. Instituto de Efectividad Clínica y Sanitaria; Argentina
Fil: Pichón-riviere, Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; Argentina
Fil: Palacios, Alfredo. Instituto de Efectividad Clínica y Sanitaria; Argentina
Fil: Bardach, Ariel Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; Argentina
Fil: Balan, Dario Javier. Instituto de Efectividad Clínica y Sanitaria; Argentina
Fil: Perelli, Lucas. Instituto de Efectividad Clínica y Sanitaria; Argentina
Fil: Augustovski, Federico Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; Argentina
Fil: Ciapponi, Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; Argentina - Materia
-
BURDEN OF DISEASE
DECISION MODELS
ECONOMIC EVALUATIONS
EPIDEMIOLOGICAL MODELS
HEALTH POLICIES
SUGAR SWEETENED BEVERAGES (SSBS) - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/212145
Ver los metadatos del registro completo
id |
CONICETDig_29bb34f847d1ee960c46bfcfdd36b190 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/212145 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Sugar sweetened beverages attributable disease burden and the potential impact of policy interventions: a systematic review of epidemiological and decision modelsAlcaraz, AndreaPichón-riviere, AndresPalacios, AlfredoBardach, Ariel EstebanBalan, Dario JavierPerelli, LucasAugustovski, Federico ArielCiapponi, AgustínBURDEN OF DISEASEDECISION MODELSECONOMIC EVALUATIONSEPIDEMIOLOGICAL MODELSHEALTH POLICIESSUGAR SWEETENED BEVERAGES (SSBS)https://purl.org/becyt/ford/3.3https://purl.org/becyt/ford/3Background: Around 184,000 deaths per year could be attributable to sugar-sweetened beverages (SSBs) consumption worldwide. Epidemiological and decision models are important tools to estimate disease burden. The purpose of this study was to identify models to assess the burden of diseases attributable to SSBs consumption or the potential impact of health interventions. Methods: We carried out a systematic review and literature search up to August 2018. Pairs of reviewers independently selected, extracted, and assessed the quality of the included studies through an exhaustive description of each model’s features. Discrepancies were solved by consensus. The inclusion criteria were epidemiological or decision models evaluating SSBs health interventions or policies, and descriptive SSBs studies of decision models. Studies published before 2003, cost of illness studies and economic evaluations based on individual patient data were excluded. Results: We identified a total of 2766 references. Out of the 40 included studies, 45% were models specifically developed to address SSBs, 82.5% were conducted in high-income countries and 57.5% considered a health system perspective. The most common model’s outcomes were obesity/overweight (82.5%), diabetes (72.5%), cardiovascular disease (60%), mortality (52.5%), direct medical costs (57.35%), and healthy years -DALYs/QALYs- (40%) attributable to SSBs. 67.5% of the studies modelled the effect of SSBs on the outcomes either entirely through BMI or through BMI plus diabetes independently. Models were usually populated with inputs from national surveys -such us obesity prevalence, SSBs consumption-; and vital statistics (67.5%). Only 55% reported results by gender and 40% included children; 30% presented results by income level, and 25% by selected vulnerable groups. Most of the models evaluated at least one policy intervention to reduce SSBs consumption (92.5%), taxes being the most frequent strategy (75%). Conclusions: There is a wide range of modelling approaches of different complexity and information requirements to evaluate the burden of disease attributable to SSBs. Most of them take into account the impact on obesity, diabetes and cardiovascular disease, mortality, and economic impact. Incorporating these tools to different countries could result in useful information for decision makers and the general population to promote a deeper implementation of policies to reduce SSBs consumption.Fil: Alcaraz, Andrea. Instituto de Efectividad Clínica y Sanitaria; ArgentinaFil: Pichón-riviere, Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; ArgentinaFil: Palacios, Alfredo. Instituto de Efectividad Clínica y Sanitaria; ArgentinaFil: Bardach, Ariel Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; ArgentinaFil: Balan, Dario Javier. Instituto de Efectividad Clínica y Sanitaria; ArgentinaFil: Perelli, Lucas. Instituto de Efectividad Clínica y Sanitaria; ArgentinaFil: Augustovski, Federico Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; ArgentinaFil: Ciapponi, Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; ArgentinaBioMed Central2021-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/212145Alcaraz, Andrea; Pichón-riviere, Andres; Palacios, Alfredo; Bardach, Ariel Esteban; Balan, Dario Javier; et al.; Sugar sweetened beverages attributable disease burden and the potential impact of policy interventions: a systematic review of epidemiological and decision models; BioMed Central; BMC Public Health; 21; 1; 12-2021; 1-111471-2458CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://bmcpublichealth.biomedcentral.com/articles/10.1186/s12889-021-11046-7info:eu-repo/semantics/altIdentifier/doi/10.1186/s12889-021-11046-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:21:54Zoai:ri.conicet.gov.ar:11336/212145instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:21:54.428CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Sugar sweetened beverages attributable disease burden and the potential impact of policy interventions: a systematic review of epidemiological and decision models |
title |
Sugar sweetened beverages attributable disease burden and the potential impact of policy interventions: a systematic review of epidemiological and decision models |
spellingShingle |
Sugar sweetened beverages attributable disease burden and the potential impact of policy interventions: a systematic review of epidemiological and decision models Alcaraz, Andrea BURDEN OF DISEASE DECISION MODELS ECONOMIC EVALUATIONS EPIDEMIOLOGICAL MODELS HEALTH POLICIES SUGAR SWEETENED BEVERAGES (SSBS) |
title_short |
Sugar sweetened beverages attributable disease burden and the potential impact of policy interventions: a systematic review of epidemiological and decision models |
title_full |
Sugar sweetened beverages attributable disease burden and the potential impact of policy interventions: a systematic review of epidemiological and decision models |
title_fullStr |
Sugar sweetened beverages attributable disease burden and the potential impact of policy interventions: a systematic review of epidemiological and decision models |
title_full_unstemmed |
Sugar sweetened beverages attributable disease burden and the potential impact of policy interventions: a systematic review of epidemiological and decision models |
title_sort |
Sugar sweetened beverages attributable disease burden and the potential impact of policy interventions: a systematic review of epidemiological and decision models |
dc.creator.none.fl_str_mv |
Alcaraz, Andrea Pichón-riviere, Andres Palacios, Alfredo Bardach, Ariel Esteban Balan, Dario Javier Perelli, Lucas Augustovski, Federico Ariel Ciapponi, Agustín |
author |
Alcaraz, Andrea |
author_facet |
Alcaraz, Andrea Pichón-riviere, Andres Palacios, Alfredo Bardach, Ariel Esteban Balan, Dario Javier Perelli, Lucas Augustovski, Federico Ariel Ciapponi, Agustín |
author_role |
author |
author2 |
Pichón-riviere, Andres Palacios, Alfredo Bardach, Ariel Esteban Balan, Dario Javier Perelli, Lucas Augustovski, Federico Ariel Ciapponi, Agustín |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
BURDEN OF DISEASE DECISION MODELS ECONOMIC EVALUATIONS EPIDEMIOLOGICAL MODELS HEALTH POLICIES SUGAR SWEETENED BEVERAGES (SSBS) |
topic |
BURDEN OF DISEASE DECISION MODELS ECONOMIC EVALUATIONS EPIDEMIOLOGICAL MODELS HEALTH POLICIES SUGAR SWEETENED BEVERAGES (SSBS) |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.3 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
Background: Around 184,000 deaths per year could be attributable to sugar-sweetened beverages (SSBs) consumption worldwide. Epidemiological and decision models are important tools to estimate disease burden. The purpose of this study was to identify models to assess the burden of diseases attributable to SSBs consumption or the potential impact of health interventions. Methods: We carried out a systematic review and literature search up to August 2018. Pairs of reviewers independently selected, extracted, and assessed the quality of the included studies through an exhaustive description of each model’s features. Discrepancies were solved by consensus. The inclusion criteria were epidemiological or decision models evaluating SSBs health interventions or policies, and descriptive SSBs studies of decision models. Studies published before 2003, cost of illness studies and economic evaluations based on individual patient data were excluded. Results: We identified a total of 2766 references. Out of the 40 included studies, 45% were models specifically developed to address SSBs, 82.5% were conducted in high-income countries and 57.5% considered a health system perspective. The most common model’s outcomes were obesity/overweight (82.5%), diabetes (72.5%), cardiovascular disease (60%), mortality (52.5%), direct medical costs (57.35%), and healthy years -DALYs/QALYs- (40%) attributable to SSBs. 67.5% of the studies modelled the effect of SSBs on the outcomes either entirely through BMI or through BMI plus diabetes independently. Models were usually populated with inputs from national surveys -such us obesity prevalence, SSBs consumption-; and vital statistics (67.5%). Only 55% reported results by gender and 40% included children; 30% presented results by income level, and 25% by selected vulnerable groups. Most of the models evaluated at least one policy intervention to reduce SSBs consumption (92.5%), taxes being the most frequent strategy (75%). Conclusions: There is a wide range of modelling approaches of different complexity and information requirements to evaluate the burden of disease attributable to SSBs. Most of them take into account the impact on obesity, diabetes and cardiovascular disease, mortality, and economic impact. Incorporating these tools to different countries could result in useful information for decision makers and the general population to promote a deeper implementation of policies to reduce SSBs consumption. Fil: Alcaraz, Andrea. Instituto de Efectividad Clínica y Sanitaria; Argentina Fil: Pichón-riviere, Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; Argentina Fil: Palacios, Alfredo. Instituto de Efectividad Clínica y Sanitaria; Argentina Fil: Bardach, Ariel Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; Argentina Fil: Balan, Dario Javier. Instituto de Efectividad Clínica y Sanitaria; Argentina Fil: Perelli, Lucas. Instituto de Efectividad Clínica y Sanitaria; Argentina Fil: Augustovski, Federico Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; Argentina Fil: Ciapponi, Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; Argentina |
description |
Background: Around 184,000 deaths per year could be attributable to sugar-sweetened beverages (SSBs) consumption worldwide. Epidemiological and decision models are important tools to estimate disease burden. The purpose of this study was to identify models to assess the burden of diseases attributable to SSBs consumption or the potential impact of health interventions. Methods: We carried out a systematic review and literature search up to August 2018. Pairs of reviewers independently selected, extracted, and assessed the quality of the included studies through an exhaustive description of each model’s features. Discrepancies were solved by consensus. The inclusion criteria were epidemiological or decision models evaluating SSBs health interventions or policies, and descriptive SSBs studies of decision models. Studies published before 2003, cost of illness studies and economic evaluations based on individual patient data were excluded. Results: We identified a total of 2766 references. Out of the 40 included studies, 45% were models specifically developed to address SSBs, 82.5% were conducted in high-income countries and 57.5% considered a health system perspective. The most common model’s outcomes were obesity/overweight (82.5%), diabetes (72.5%), cardiovascular disease (60%), mortality (52.5%), direct medical costs (57.35%), and healthy years -DALYs/QALYs- (40%) attributable to SSBs. 67.5% of the studies modelled the effect of SSBs on the outcomes either entirely through BMI or through BMI plus diabetes independently. Models were usually populated with inputs from national surveys -such us obesity prevalence, SSBs consumption-; and vital statistics (67.5%). Only 55% reported results by gender and 40% included children; 30% presented results by income level, and 25% by selected vulnerable groups. Most of the models evaluated at least one policy intervention to reduce SSBs consumption (92.5%), taxes being the most frequent strategy (75%). Conclusions: There is a wide range of modelling approaches of different complexity and information requirements to evaluate the burden of disease attributable to SSBs. Most of them take into account the impact on obesity, diabetes and cardiovascular disease, mortality, and economic impact. Incorporating these tools to different countries could result in useful information for decision makers and the general population to promote a deeper implementation of policies to reduce SSBs consumption. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/212145 Alcaraz, Andrea; Pichón-riviere, Andres; Palacios, Alfredo; Bardach, Ariel Esteban; Balan, Dario Javier; et al.; Sugar sweetened beverages attributable disease burden and the potential impact of policy interventions: a systematic review of epidemiological and decision models; BioMed Central; BMC Public Health; 21; 1; 12-2021; 1-11 1471-2458 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/212145 |
identifier_str_mv |
Alcaraz, Andrea; Pichón-riviere, Andres; Palacios, Alfredo; Bardach, Ariel Esteban; Balan, Dario Javier; et al.; Sugar sweetened beverages attributable disease burden and the potential impact of policy interventions: a systematic review of epidemiological and decision models; BioMed Central; BMC Public Health; 21; 1; 12-2021; 1-11 1471-2458 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://bmcpublichealth.biomedcentral.com/articles/10.1186/s12889-021-11046-7 info:eu-repo/semantics/altIdentifier/doi/10.1186/s12889-021-11046-7 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
BioMed Central |
publisher.none.fl_str_mv |
BioMed Central |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981204841725952 |
score |
12.48226 |