Simulación numérica no lineal de una sección alar típica con oscilaciones autoexcitadas

Autores
Castello, Walter Braulio; Preidikman, Sergio; Brewer, Alejandro Tulio
Año de publicación
2014
Idioma
español castellano
Tipo de recurso
artículo
Estado
versión publicada
Descripción
La respuesta de estructuras flexibles a solicitaciones de origen aerodinámico es generalmente de naturaleza no lineal. La característica del comportamiento aeroelástico depende, no solo, de las propiedades de los subsistemas involucrados (estructural y aerodinámico) sino también de la manera en que estos dos subsistemas se combinan. La respuesta no lineal de una sección alar con dos grados de libertad ha sido ampliamente estudiada. La importancia del análisis de sistemas aeroelásticos radica en su capacidad para predecir la respuesta de algunos componentes críticos de una aeronave. Por ejemplo, la pérdida de rigidez en las superficies de control es causa de niveles inaceptables de vibraciones de la aeronave. Estas vibraciones deben ser evitadas, pues la transición entre vibraciones indeseables y flutter es en general difusa. Y como es sabido, el flutter de las superficies de control puede dañarlas provocando la pérdida de la aeronave. En este trabajo se estudia numéricamente la dinámica no lineal de un sistema aeroelástico con comportamiento estructural no lineal cúbico y “juego” en la rigidez torsional de la sección alar. El modelo de orden reducido emplea las hipótesis de la conocida “sección tí- pica”. Las cargas aerodinámicas se obtienen mediante el uso de un método de red de vórtices bidimensional, inestacionario y no lineal. Las ecuaciones que gobiernan el sistema aeroelástico son integradas numérica, simultánea, e interactivamente en el dominio del tiempo. El modelo desarrollado permite determinar la amplitud y la frecuencia de las vibraciones autoexcitadas inducidas por el cambio en la rigidez torsional, la incidencia en la velocidad de flutter del sistema aeroelástico, y la aparición de ciclos límite. Los resultados provenientes de las simulaciones numéricas muestran una importante correlación con los obtenidos por otros autores, además el modelo matemático presentado en este trabajo resulta ser más eficiente y preciso, en particular para los casos altamente no lineales.
Fil: Castello, Walter Braulio. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Departamento de Estructuras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Preidikman, Sergio. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Departamento de Estructuras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Brewer, Alejandro Tulio. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Departamento de Estructuras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
OSCILACIONES AUTOEXITADAS
AEROELASTICIDAD NO LINEAL
DINAMICA ESTRUCTURAL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/35107

id CONICETDig_294781b4b3c7a8e485ad0fb9ea6e417a
oai_identifier_str oai:ri.conicet.gov.ar:11336/35107
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Simulación numérica no lineal de una sección alar típica con oscilaciones autoexcitadasCastello, Walter BraulioPreidikman, SergioBrewer, Alejandro TulioOSCILACIONES AUTOEXITADASAEROELASTICIDAD NO LINEALDINAMICA ESTRUCTURALhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2La respuesta de estructuras flexibles a solicitaciones de origen aerodinámico es generalmente de naturaleza no lineal. La característica del comportamiento aeroelástico depende, no solo, de las propiedades de los subsistemas involucrados (estructural y aerodinámico) sino también de la manera en que estos dos subsistemas se combinan. La respuesta no lineal de una sección alar con dos grados de libertad ha sido ampliamente estudiada. La importancia del análisis de sistemas aeroelásticos radica en su capacidad para predecir la respuesta de algunos componentes críticos de una aeronave. Por ejemplo, la pérdida de rigidez en las superficies de control es causa de niveles inaceptables de vibraciones de la aeronave. Estas vibraciones deben ser evitadas, pues la transición entre vibraciones indeseables y flutter es en general difusa. Y como es sabido, el flutter de las superficies de control puede dañarlas provocando la pérdida de la aeronave. En este trabajo se estudia numéricamente la dinámica no lineal de un sistema aeroelástico con comportamiento estructural no lineal cúbico y “juego” en la rigidez torsional de la sección alar. El modelo de orden reducido emplea las hipótesis de la conocida “sección tí- pica”. Las cargas aerodinámicas se obtienen mediante el uso de un método de red de vórtices bidimensional, inestacionario y no lineal. Las ecuaciones que gobiernan el sistema aeroelástico son integradas numérica, simultánea, e interactivamente en el dominio del tiempo. El modelo desarrollado permite determinar la amplitud y la frecuencia de las vibraciones autoexcitadas inducidas por el cambio en la rigidez torsional, la incidencia en la velocidad de flutter del sistema aeroelástico, y la aparición de ciclos límite. Los resultados provenientes de las simulaciones numéricas muestran una importante correlación con los obtenidos por otros autores, además el modelo matemático presentado en este trabajo resulta ser más eficiente y preciso, en particular para los casos altamente no lineales.Fil: Castello, Walter Braulio. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Departamento de Estructuras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Preidikman, Sergio. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Departamento de Estructuras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Brewer, Alejandro Tulio. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Departamento de Estructuras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaUniversidad Nacional de Educación a Distancia2014-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/35107Castello, Walter Braulio; Preidikman, Sergio; Brewer, Alejandro Tulio; Simulación numérica no lineal de una sección alar típica con oscilaciones autoexcitadas; Universidad Nacional de Educación a Distancia; Revista Iberoamericana de Ingeniería Mecánica; 18; 2; 10-2014; 137-1511137-2729CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/http://www2.uned.es/ribim/v18n2Octubre14.htmlinfo:eu-repo/semantics/altIdentifier/url/http://www2.uned.es/ribim/volumenes/Vol18N2Octubre2014/V18N2A10%20Castello.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:26:28Zoai:ri.conicet.gov.ar:11336/35107instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:26:29.07CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Simulación numérica no lineal de una sección alar típica con oscilaciones autoexcitadas
title Simulación numérica no lineal de una sección alar típica con oscilaciones autoexcitadas
spellingShingle Simulación numérica no lineal de una sección alar típica con oscilaciones autoexcitadas
Castello, Walter Braulio
OSCILACIONES AUTOEXITADAS
AEROELASTICIDAD NO LINEAL
DINAMICA ESTRUCTURAL
title_short Simulación numérica no lineal de una sección alar típica con oscilaciones autoexcitadas
title_full Simulación numérica no lineal de una sección alar típica con oscilaciones autoexcitadas
title_fullStr Simulación numérica no lineal de una sección alar típica con oscilaciones autoexcitadas
title_full_unstemmed Simulación numérica no lineal de una sección alar típica con oscilaciones autoexcitadas
title_sort Simulación numérica no lineal de una sección alar típica con oscilaciones autoexcitadas
dc.creator.none.fl_str_mv Castello, Walter Braulio
Preidikman, Sergio
Brewer, Alejandro Tulio
author Castello, Walter Braulio
author_facet Castello, Walter Braulio
Preidikman, Sergio
Brewer, Alejandro Tulio
author_role author
author2 Preidikman, Sergio
Brewer, Alejandro Tulio
author2_role author
author
dc.subject.none.fl_str_mv OSCILACIONES AUTOEXITADAS
AEROELASTICIDAD NO LINEAL
DINAMICA ESTRUCTURAL
topic OSCILACIONES AUTOEXITADAS
AEROELASTICIDAD NO LINEAL
DINAMICA ESTRUCTURAL
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv La respuesta de estructuras flexibles a solicitaciones de origen aerodinámico es generalmente de naturaleza no lineal. La característica del comportamiento aeroelástico depende, no solo, de las propiedades de los subsistemas involucrados (estructural y aerodinámico) sino también de la manera en que estos dos subsistemas se combinan. La respuesta no lineal de una sección alar con dos grados de libertad ha sido ampliamente estudiada. La importancia del análisis de sistemas aeroelásticos radica en su capacidad para predecir la respuesta de algunos componentes críticos de una aeronave. Por ejemplo, la pérdida de rigidez en las superficies de control es causa de niveles inaceptables de vibraciones de la aeronave. Estas vibraciones deben ser evitadas, pues la transición entre vibraciones indeseables y flutter es en general difusa. Y como es sabido, el flutter de las superficies de control puede dañarlas provocando la pérdida de la aeronave. En este trabajo se estudia numéricamente la dinámica no lineal de un sistema aeroelástico con comportamiento estructural no lineal cúbico y “juego” en la rigidez torsional de la sección alar. El modelo de orden reducido emplea las hipótesis de la conocida “sección tí- pica”. Las cargas aerodinámicas se obtienen mediante el uso de un método de red de vórtices bidimensional, inestacionario y no lineal. Las ecuaciones que gobiernan el sistema aeroelástico son integradas numérica, simultánea, e interactivamente en el dominio del tiempo. El modelo desarrollado permite determinar la amplitud y la frecuencia de las vibraciones autoexcitadas inducidas por el cambio en la rigidez torsional, la incidencia en la velocidad de flutter del sistema aeroelástico, y la aparición de ciclos límite. Los resultados provenientes de las simulaciones numéricas muestran una importante correlación con los obtenidos por otros autores, además el modelo matemático presentado en este trabajo resulta ser más eficiente y preciso, en particular para los casos altamente no lineales.
Fil: Castello, Walter Braulio. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Departamento de Estructuras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Preidikman, Sergio. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Departamento de Estructuras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Brewer, Alejandro Tulio. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Departamento de Estructuras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description La respuesta de estructuras flexibles a solicitaciones de origen aerodinámico es generalmente de naturaleza no lineal. La característica del comportamiento aeroelástico depende, no solo, de las propiedades de los subsistemas involucrados (estructural y aerodinámico) sino también de la manera en que estos dos subsistemas se combinan. La respuesta no lineal de una sección alar con dos grados de libertad ha sido ampliamente estudiada. La importancia del análisis de sistemas aeroelásticos radica en su capacidad para predecir la respuesta de algunos componentes críticos de una aeronave. Por ejemplo, la pérdida de rigidez en las superficies de control es causa de niveles inaceptables de vibraciones de la aeronave. Estas vibraciones deben ser evitadas, pues la transición entre vibraciones indeseables y flutter es en general difusa. Y como es sabido, el flutter de las superficies de control puede dañarlas provocando la pérdida de la aeronave. En este trabajo se estudia numéricamente la dinámica no lineal de un sistema aeroelástico con comportamiento estructural no lineal cúbico y “juego” en la rigidez torsional de la sección alar. El modelo de orden reducido emplea las hipótesis de la conocida “sección tí- pica”. Las cargas aerodinámicas se obtienen mediante el uso de un método de red de vórtices bidimensional, inestacionario y no lineal. Las ecuaciones que gobiernan el sistema aeroelástico son integradas numérica, simultánea, e interactivamente en el dominio del tiempo. El modelo desarrollado permite determinar la amplitud y la frecuencia de las vibraciones autoexcitadas inducidas por el cambio en la rigidez torsional, la incidencia en la velocidad de flutter del sistema aeroelástico, y la aparición de ciclos límite. Los resultados provenientes de las simulaciones numéricas muestran una importante correlación con los obtenidos por otros autores, además el modelo matemático presentado en este trabajo resulta ser más eficiente y preciso, en particular para los casos altamente no lineales.
publishDate 2014
dc.date.none.fl_str_mv 2014-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/35107
Castello, Walter Braulio; Preidikman, Sergio; Brewer, Alejandro Tulio; Simulación numérica no lineal de una sección alar típica con oscilaciones autoexcitadas; Universidad Nacional de Educación a Distancia; Revista Iberoamericana de Ingeniería Mecánica; 18; 2; 10-2014; 137-151
1137-2729
CONICET Digital
CONICET
url http://hdl.handle.net/11336/35107
identifier_str_mv Castello, Walter Braulio; Preidikman, Sergio; Brewer, Alejandro Tulio; Simulación numérica no lineal de una sección alar típica con oscilaciones autoexcitadas; Universidad Nacional de Educación a Distancia; Revista Iberoamericana de Ingeniería Mecánica; 18; 2; 10-2014; 137-151
1137-2729
CONICET Digital
CONICET
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www2.uned.es/ribim/v18n2Octubre14.html
info:eu-repo/semantics/altIdentifier/url/http://www2.uned.es/ribim/volumenes/Vol18N2Octubre2014/V18N2A10%20Castello.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional de Educación a Distancia
publisher.none.fl_str_mv Universidad Nacional de Educación a Distancia
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614266166968320
score 13.070432