Scope for industrial applications of production scheduling and solution methods
- Autores
- Harjunkoski, Iiro; Maravelias, Christos; Bongersc, Peter; Castro, Pedro; Engell, Sebastian; Grossmann, Ignacio; Hooker, John; Mendez, Carlos Alberto; Sand, Guido; Wassick, John
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper gives a review on existing scheduling methodologies developed for process industries. Above all, the aim of the paper is to focus on the industrial aspects of scheduling and discuss the main characteristics, including strengths and weaknesses of the presented approaches. It is claimed that optimization tools of today can effectively support the plant level production. However there is still clear potential for improvements, especially in transferring academic results into industry. For instance, usability, interfacing and integration are some aspects discussed in the paper. After the introduction and problem classification, the paper discusses some lessons learned from industry, provides an overview of models and methods and concludes with general guidelines and examples on the modeling and solution of industrial problems.
Fil: Harjunkoski, Iiro. ABB Corporate Research; Alemania
Fil: Maravelias, Christos. University Of Wisconsin; Estados Unidos
Fil: Bongersc, Peter. Eindhoven University of Technology; Países Bajos
Fil: Castro, Pedro. Laboratório Nacional de Energia e Geologia; Portugal
Fil: Engell, Sebastian. Universitat Dortmund; Alemania
Fil: Grossmann, Ignacio. University Of Carnegie Mellon; Estados Unidos
Fil: Hooker, John. University Of Carnegie Mellon; Estados Unidos
Fil: Mendez, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina
Fil: Sand, Guido. ABB Corporate Research; Alemania
Fil: Wassick, John. The Dow Chemical Company; Estados Unidos - Materia
-
Scheduling
Optimization
Modeling - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/9327
Ver los metadatos del registro completo
id |
CONICETDig_28701521a8e6bccb0cc70b1361eba168 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/9327 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Scope for industrial applications of production scheduling and solution methodsHarjunkoski, IiroMaravelias, ChristosBongersc, PeterCastro, PedroEngell, SebastianGrossmann, IgnacioHooker, JohnMendez, Carlos AlbertoSand, GuidoWassick, JohnSchedulingOptimizationModelinghttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2This paper gives a review on existing scheduling methodologies developed for process industries. Above all, the aim of the paper is to focus on the industrial aspects of scheduling and discuss the main characteristics, including strengths and weaknesses of the presented approaches. It is claimed that optimization tools of today can effectively support the plant level production. However there is still clear potential for improvements, especially in transferring academic results into industry. For instance, usability, interfacing and integration are some aspects discussed in the paper. After the introduction and problem classification, the paper discusses some lessons learned from industry, provides an overview of models and methods and concludes with general guidelines and examples on the modeling and solution of industrial problems.Fil: Harjunkoski, Iiro. ABB Corporate Research; AlemaniaFil: Maravelias, Christos. University Of Wisconsin; Estados UnidosFil: Bongersc, Peter. Eindhoven University of Technology; Países BajosFil: Castro, Pedro. Laboratório Nacional de Energia e Geologia; PortugalFil: Engell, Sebastian. Universitat Dortmund; AlemaniaFil: Grossmann, Ignacio. University Of Carnegie Mellon; Estados UnidosFil: Hooker, John. University Of Carnegie Mellon; Estados UnidosFil: Mendez, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); ArgentinaFil: Sand, Guido. ABB Corporate Research; AlemaniaFil: Wassick, John. The Dow Chemical Company; Estados UnidosElsevier2014-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/9327Harjunkoski, Iiro; Maravelias, Christos; Bongersc, Peter; Castro, Pedro; Engell, Sebastian; et al.; Scope for industrial applications of production scheduling and solution methods; Elsevier; Computers And Chemical Engineering; 62; 10-2014; 161-1930098-1354enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2013.12.001info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0098135413003682info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:02:20Zoai:ri.conicet.gov.ar:11336/9327instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:02:20.876CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Scope for industrial applications of production scheduling and solution methods |
title |
Scope for industrial applications of production scheduling and solution methods |
spellingShingle |
Scope for industrial applications of production scheduling and solution methods Harjunkoski, Iiro Scheduling Optimization Modeling |
title_short |
Scope for industrial applications of production scheduling and solution methods |
title_full |
Scope for industrial applications of production scheduling and solution methods |
title_fullStr |
Scope for industrial applications of production scheduling and solution methods |
title_full_unstemmed |
Scope for industrial applications of production scheduling and solution methods |
title_sort |
Scope for industrial applications of production scheduling and solution methods |
dc.creator.none.fl_str_mv |
Harjunkoski, Iiro Maravelias, Christos Bongersc, Peter Castro, Pedro Engell, Sebastian Grossmann, Ignacio Hooker, John Mendez, Carlos Alberto Sand, Guido Wassick, John |
author |
Harjunkoski, Iiro |
author_facet |
Harjunkoski, Iiro Maravelias, Christos Bongersc, Peter Castro, Pedro Engell, Sebastian Grossmann, Ignacio Hooker, John Mendez, Carlos Alberto Sand, Guido Wassick, John |
author_role |
author |
author2 |
Maravelias, Christos Bongersc, Peter Castro, Pedro Engell, Sebastian Grossmann, Ignacio Hooker, John Mendez, Carlos Alberto Sand, Guido Wassick, John |
author2_role |
author author author author author author author author author |
dc.subject.none.fl_str_mv |
Scheduling Optimization Modeling |
topic |
Scheduling Optimization Modeling |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This paper gives a review on existing scheduling methodologies developed for process industries. Above all, the aim of the paper is to focus on the industrial aspects of scheduling and discuss the main characteristics, including strengths and weaknesses of the presented approaches. It is claimed that optimization tools of today can effectively support the plant level production. However there is still clear potential for improvements, especially in transferring academic results into industry. For instance, usability, interfacing and integration are some aspects discussed in the paper. After the introduction and problem classification, the paper discusses some lessons learned from industry, provides an overview of models and methods and concludes with general guidelines and examples on the modeling and solution of industrial problems. Fil: Harjunkoski, Iiro. ABB Corporate Research; Alemania Fil: Maravelias, Christos. University Of Wisconsin; Estados Unidos Fil: Bongersc, Peter. Eindhoven University of Technology; Países Bajos Fil: Castro, Pedro. Laboratório Nacional de Energia e Geologia; Portugal Fil: Engell, Sebastian. Universitat Dortmund; Alemania Fil: Grossmann, Ignacio. University Of Carnegie Mellon; Estados Unidos Fil: Hooker, John. University Of Carnegie Mellon; Estados Unidos Fil: Mendez, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina Fil: Sand, Guido. ABB Corporate Research; Alemania Fil: Wassick, John. The Dow Chemical Company; Estados Unidos |
description |
This paper gives a review on existing scheduling methodologies developed for process industries. Above all, the aim of the paper is to focus on the industrial aspects of scheduling and discuss the main characteristics, including strengths and weaknesses of the presented approaches. It is claimed that optimization tools of today can effectively support the plant level production. However there is still clear potential for improvements, especially in transferring academic results into industry. For instance, usability, interfacing and integration are some aspects discussed in the paper. After the introduction and problem classification, the paper discusses some lessons learned from industry, provides an overview of models and methods and concludes with general guidelines and examples on the modeling and solution of industrial problems. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/9327 Harjunkoski, Iiro; Maravelias, Christos; Bongersc, Peter; Castro, Pedro; Engell, Sebastian; et al.; Scope for industrial applications of production scheduling and solution methods; Elsevier; Computers And Chemical Engineering; 62; 10-2014; 161-193 0098-1354 |
url |
http://hdl.handle.net/11336/9327 |
identifier_str_mv |
Harjunkoski, Iiro; Maravelias, Christos; Bongersc, Peter; Castro, Pedro; Engell, Sebastian; et al.; Scope for industrial applications of production scheduling and solution methods; Elsevier; Computers And Chemical Engineering; 62; 10-2014; 161-193 0098-1354 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2013.12.001 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0098135413003682 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269751826448384 |
score |
13.13397 |