Derivative expansion for the Casimir effect at zero and finite temperature in d+1 dimensions

Autores
Fosco, Cesar Daniel; Lombardo, Fernando Cesar; Mazzitelli, Francisco Diego
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We apply the derivative expansion approach to the Casimir effect for a real scalar field in d spatial dimensions to calculate the next-to-leading-order term in that expansion, namely, the first correction to the proximity force approximation. The field satisfies either Dirichlet or Neumann boundary conditions on two static mirrors, one of them flat and the other gently curved. We show that, for Dirichlet boundary conditions, the next-to-leading-order term in the Casimir energy is of quadratic order in derivatives, regardless of the number of dimensions. Therefore, it is local and determined by a single coefficient. We show that the same holds true, if d*2, for a field which satisfies Neumann conditions. When d=2, the next-to-leading-order term becomes nonlocal in coordinate space, a manifestation of the existence of a gapless excitation (which does exist also for d>2, but produces subleading terms). We also consider a derivative expansion approach including thermal fluctuations of the scalar field. We show that, for Dirichlet mirrors, the next-to-leading- order term in the free energy is also local for any temperature T. Besides, it interpolates between the proper limits: when T→0, it tends to the one we had calculated for the Casimir energy in d dimensions, while for T→∞, it corresponds to the one for a theory in d-1 dimensions, because of the expected dimensional reduction at high temperatures. For Neumann mirrors in d=3, we find a nonlocal next-to-leading-order term for any T>0. © 2012 American Physical Society.
Fil: Fosco, Cesar Daniel. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina
Fil: Lombardo, Fernando Cesar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Grupo de Física Teórica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Mazzitelli, Francisco Diego. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Grupo de Física Teórica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Materia
Casimir
Proximity
Temperature
Approximation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/78220

id CONICETDig_25c169667a31542fce7321ec0f63bef5
oai_identifier_str oai:ri.conicet.gov.ar:11336/78220
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Derivative expansion for the Casimir effect at zero and finite temperature in d+1 dimensionsFosco, Cesar DanielLombardo, Fernando CesarMazzitelli, Francisco DiegoCasimirProximityTemperatureApproximationhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We apply the derivative expansion approach to the Casimir effect for a real scalar field in d spatial dimensions to calculate the next-to-leading-order term in that expansion, namely, the first correction to the proximity force approximation. The field satisfies either Dirichlet or Neumann boundary conditions on two static mirrors, one of them flat and the other gently curved. We show that, for Dirichlet boundary conditions, the next-to-leading-order term in the Casimir energy is of quadratic order in derivatives, regardless of the number of dimensions. Therefore, it is local and determined by a single coefficient. We show that the same holds true, if d*2, for a field which satisfies Neumann conditions. When d=2, the next-to-leading-order term becomes nonlocal in coordinate space, a manifestation of the existence of a gapless excitation (which does exist also for d>2, but produces subleading terms). We also consider a derivative expansion approach including thermal fluctuations of the scalar field. We show that, for Dirichlet mirrors, the next-to-leading- order term in the free energy is also local for any temperature T. Besides, it interpolates between the proper limits: when T→0, it tends to the one we had calculated for the Casimir energy in d dimensions, while for T→∞, it corresponds to the one for a theory in d-1 dimensions, because of the expected dimensional reduction at high temperatures. For Neumann mirrors in d=3, we find a nonlocal next-to-leading-order term for any T>0. © 2012 American Physical Society.Fil: Fosco, Cesar Daniel. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); ArgentinaFil: Lombardo, Fernando Cesar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Grupo de Física Teórica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Mazzitelli, Francisco Diego. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Grupo de Física Teórica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaAmerican Physical Society2012-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/78220Fosco, Cesar Daniel; Lombardo, Fernando Cesar; Mazzitelli, Francisco Diego; Derivative expansion for the Casimir effect at zero and finite temperature in d+1 dimensions; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 86; 4; 8-2012; 45021-450351550-7998CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.86.045021info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:06:18Zoai:ri.conicet.gov.ar:11336/78220instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:06:18.444CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Derivative expansion for the Casimir effect at zero and finite temperature in d+1 dimensions
title Derivative expansion for the Casimir effect at zero and finite temperature in d+1 dimensions
spellingShingle Derivative expansion for the Casimir effect at zero and finite temperature in d+1 dimensions
Fosco, Cesar Daniel
Casimir
Proximity
Temperature
Approximation
title_short Derivative expansion for the Casimir effect at zero and finite temperature in d+1 dimensions
title_full Derivative expansion for the Casimir effect at zero and finite temperature in d+1 dimensions
title_fullStr Derivative expansion for the Casimir effect at zero and finite temperature in d+1 dimensions
title_full_unstemmed Derivative expansion for the Casimir effect at zero and finite temperature in d+1 dimensions
title_sort Derivative expansion for the Casimir effect at zero and finite temperature in d+1 dimensions
dc.creator.none.fl_str_mv Fosco, Cesar Daniel
Lombardo, Fernando Cesar
Mazzitelli, Francisco Diego
author Fosco, Cesar Daniel
author_facet Fosco, Cesar Daniel
Lombardo, Fernando Cesar
Mazzitelli, Francisco Diego
author_role author
author2 Lombardo, Fernando Cesar
Mazzitelli, Francisco Diego
author2_role author
author
dc.subject.none.fl_str_mv Casimir
Proximity
Temperature
Approximation
topic Casimir
Proximity
Temperature
Approximation
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We apply the derivative expansion approach to the Casimir effect for a real scalar field in d spatial dimensions to calculate the next-to-leading-order term in that expansion, namely, the first correction to the proximity force approximation. The field satisfies either Dirichlet or Neumann boundary conditions on two static mirrors, one of them flat and the other gently curved. We show that, for Dirichlet boundary conditions, the next-to-leading-order term in the Casimir energy is of quadratic order in derivatives, regardless of the number of dimensions. Therefore, it is local and determined by a single coefficient. We show that the same holds true, if d*2, for a field which satisfies Neumann conditions. When d=2, the next-to-leading-order term becomes nonlocal in coordinate space, a manifestation of the existence of a gapless excitation (which does exist also for d>2, but produces subleading terms). We also consider a derivative expansion approach including thermal fluctuations of the scalar field. We show that, for Dirichlet mirrors, the next-to-leading- order term in the free energy is also local for any temperature T. Besides, it interpolates between the proper limits: when T→0, it tends to the one we had calculated for the Casimir energy in d dimensions, while for T→∞, it corresponds to the one for a theory in d-1 dimensions, because of the expected dimensional reduction at high temperatures. For Neumann mirrors in d=3, we find a nonlocal next-to-leading-order term for any T>0. © 2012 American Physical Society.
Fil: Fosco, Cesar Daniel. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina
Fil: Lombardo, Fernando Cesar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Grupo de Física Teórica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Mazzitelli, Francisco Diego. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Grupo de Física Teórica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
description We apply the derivative expansion approach to the Casimir effect for a real scalar field in d spatial dimensions to calculate the next-to-leading-order term in that expansion, namely, the first correction to the proximity force approximation. The field satisfies either Dirichlet or Neumann boundary conditions on two static mirrors, one of them flat and the other gently curved. We show that, for Dirichlet boundary conditions, the next-to-leading-order term in the Casimir energy is of quadratic order in derivatives, regardless of the number of dimensions. Therefore, it is local and determined by a single coefficient. We show that the same holds true, if d*2, for a field which satisfies Neumann conditions. When d=2, the next-to-leading-order term becomes nonlocal in coordinate space, a manifestation of the existence of a gapless excitation (which does exist also for d>2, but produces subleading terms). We also consider a derivative expansion approach including thermal fluctuations of the scalar field. We show that, for Dirichlet mirrors, the next-to-leading- order term in the free energy is also local for any temperature T. Besides, it interpolates between the proper limits: when T→0, it tends to the one we had calculated for the Casimir energy in d dimensions, while for T→∞, it corresponds to the one for a theory in d-1 dimensions, because of the expected dimensional reduction at high temperatures. For Neumann mirrors in d=3, we find a nonlocal next-to-leading-order term for any T>0. © 2012 American Physical Society.
publishDate 2012
dc.date.none.fl_str_mv 2012-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/78220
Fosco, Cesar Daniel; Lombardo, Fernando Cesar; Mazzitelli, Francisco Diego; Derivative expansion for the Casimir effect at zero and finite temperature in d+1 dimensions; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 86; 4; 8-2012; 45021-45035
1550-7998
CONICET Digital
CONICET
url http://hdl.handle.net/11336/78220
identifier_str_mv Fosco, Cesar Daniel; Lombardo, Fernando Cesar; Mazzitelli, Francisco Diego; Derivative expansion for the Casimir effect at zero and finite temperature in d+1 dimensions; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 86; 4; 8-2012; 45021-45035
1550-7998
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.86.045021
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782418967592960
score 13.229304