Derivative expansion for the electromagnetic and Neumann-Casimir effects in 2+1 dimensions with imperfect mirrors
- Autores
- Fosco, Cesar Daniel; Lombardo, Fernando Cesar; Mazzitelli, Francisco Diego
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We calculate the Casimir interaction energy in d = 2 spatial dimensions between two (zero-width) mirrors -one flat and the other slightly curved- upon which imperfect conductor boundary conditions are imposed for an electromagnetic (EM) field. Our main result is a second-order derivative expansion (DE) approximation for the Casimir energy, which is studied in different interesting limits. In particular, we focus on the emergence of a nonanalyticity beyond the leading-order term in the DE, when approaching the limit of perfectly conducting mirrors. We also show that the system considered is equivalent to a dual one, consisting of a massless real scalar field satisfying imperfect Neumann conditions (on the very same boundaries). Therefore, the results obtained for the EM field hold true also for the scalar field model.
Fil: Fosco, Cesar Daniel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lombardo, Fernando Cesar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Mazzitelli, Francisco Diego. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Casimir effects
Derivative expansion - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/44276
Ver los metadatos del registro completo
id |
CONICETDig_277ba381bcc1b41b904999ae3d798de5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/44276 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Derivative expansion for the electromagnetic and Neumann-Casimir effects in 2+1 dimensions with imperfect mirrorsFosco, Cesar DanielLombardo, Fernando CesarMazzitelli, Francisco DiegoCasimir effectsDerivative expansionhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We calculate the Casimir interaction energy in d = 2 spatial dimensions between two (zero-width) mirrors -one flat and the other slightly curved- upon which imperfect conductor boundary conditions are imposed for an electromagnetic (EM) field. Our main result is a second-order derivative expansion (DE) approximation for the Casimir energy, which is studied in different interesting limits. In particular, we focus on the emergence of a nonanalyticity beyond the leading-order term in the DE, when approaching the limit of perfectly conducting mirrors. We also show that the system considered is equivalent to a dual one, consisting of a massless real scalar field satisfying imperfect Neumann conditions (on the very same boundaries). Therefore, the results obtained for the EM field hold true also for the scalar field model.Fil: Fosco, Cesar Daniel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lombardo, Fernando Cesar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Mazzitelli, Francisco Diego. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmerican Physical Society2015-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/44276Fosco, Cesar Daniel; Lombardo, Fernando Cesar; Mazzitelli, Francisco Diego; Derivative expansion for the electromagnetic and Neumann-Casimir effects in 2+1 dimensions with imperfect mirrors; American Physical Society; Physical Review D; 91; 10; 5-2015; 1-9; 1050190556-2821CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.91.105019info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.91.105019info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1503.02913info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:48:07Zoai:ri.conicet.gov.ar:11336/44276instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:48:07.994CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Derivative expansion for the electromagnetic and Neumann-Casimir effects in 2+1 dimensions with imperfect mirrors |
title |
Derivative expansion for the electromagnetic and Neumann-Casimir effects in 2+1 dimensions with imperfect mirrors |
spellingShingle |
Derivative expansion for the electromagnetic and Neumann-Casimir effects in 2+1 dimensions with imperfect mirrors Fosco, Cesar Daniel Casimir effects Derivative expansion |
title_short |
Derivative expansion for the electromagnetic and Neumann-Casimir effects in 2+1 dimensions with imperfect mirrors |
title_full |
Derivative expansion for the electromagnetic and Neumann-Casimir effects in 2+1 dimensions with imperfect mirrors |
title_fullStr |
Derivative expansion for the electromagnetic and Neumann-Casimir effects in 2+1 dimensions with imperfect mirrors |
title_full_unstemmed |
Derivative expansion for the electromagnetic and Neumann-Casimir effects in 2+1 dimensions with imperfect mirrors |
title_sort |
Derivative expansion for the electromagnetic and Neumann-Casimir effects in 2+1 dimensions with imperfect mirrors |
dc.creator.none.fl_str_mv |
Fosco, Cesar Daniel Lombardo, Fernando Cesar Mazzitelli, Francisco Diego |
author |
Fosco, Cesar Daniel |
author_facet |
Fosco, Cesar Daniel Lombardo, Fernando Cesar Mazzitelli, Francisco Diego |
author_role |
author |
author2 |
Lombardo, Fernando Cesar Mazzitelli, Francisco Diego |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Casimir effects Derivative expansion |
topic |
Casimir effects Derivative expansion |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We calculate the Casimir interaction energy in d = 2 spatial dimensions between two (zero-width) mirrors -one flat and the other slightly curved- upon which imperfect conductor boundary conditions are imposed for an electromagnetic (EM) field. Our main result is a second-order derivative expansion (DE) approximation for the Casimir energy, which is studied in different interesting limits. In particular, we focus on the emergence of a nonanalyticity beyond the leading-order term in the DE, when approaching the limit of perfectly conducting mirrors. We also show that the system considered is equivalent to a dual one, consisting of a massless real scalar field satisfying imperfect Neumann conditions (on the very same boundaries). Therefore, the results obtained for the EM field hold true also for the scalar field model. Fil: Fosco, Cesar Daniel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Lombardo, Fernando Cesar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Mazzitelli, Francisco Diego. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We calculate the Casimir interaction energy in d = 2 spatial dimensions between two (zero-width) mirrors -one flat and the other slightly curved- upon which imperfect conductor boundary conditions are imposed for an electromagnetic (EM) field. Our main result is a second-order derivative expansion (DE) approximation for the Casimir energy, which is studied in different interesting limits. In particular, we focus on the emergence of a nonanalyticity beyond the leading-order term in the DE, when approaching the limit of perfectly conducting mirrors. We also show that the system considered is equivalent to a dual one, consisting of a massless real scalar field satisfying imperfect Neumann conditions (on the very same boundaries). Therefore, the results obtained for the EM field hold true also for the scalar field model. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/44276 Fosco, Cesar Daniel; Lombardo, Fernando Cesar; Mazzitelli, Francisco Diego; Derivative expansion for the electromagnetic and Neumann-Casimir effects in 2+1 dimensions with imperfect mirrors; American Physical Society; Physical Review D; 91; 10; 5-2015; 1-9; 105019 0556-2821 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/44276 |
identifier_str_mv |
Fosco, Cesar Daniel; Lombardo, Fernando Cesar; Mazzitelli, Francisco Diego; Derivative expansion for the electromagnetic and Neumann-Casimir effects in 2+1 dimensions with imperfect mirrors; American Physical Society; Physical Review D; 91; 10; 5-2015; 1-9; 105019 0556-2821 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.91.105019 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.91.105019 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1503.02913 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268904569700352 |
score |
13.13397 |