Derivative expansion for the electromagnetic and Neumann-Casimir effects in 2+1 dimensions with imperfect mirrors

Autores
Fosco, Cesar Daniel; Lombardo, Fernando Cesar; Mazzitelli, Francisco Diego
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We calculate the Casimir interaction energy in d = 2 spatial dimensions between two (zero-width) mirrors -one flat and the other slightly curved- upon which imperfect conductor boundary conditions are imposed for an electromagnetic (EM) field. Our main result is a second-order derivative expansion (DE) approximation for the Casimir energy, which is studied in different interesting limits. In particular, we focus on the emergence of a nonanalyticity beyond the leading-order term in the DE, when approaching the limit of perfectly conducting mirrors. We also show that the system considered is equivalent to a dual one, consisting of a massless real scalar field satisfying imperfect Neumann conditions (on the very same boundaries). Therefore, the results obtained for the EM field hold true also for the scalar field model.
Fil: Fosco, Cesar Daniel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lombardo, Fernando Cesar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Mazzitelli, Francisco Diego. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Casimir effects
Derivative expansion
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/44276

id CONICETDig_277ba381bcc1b41b904999ae3d798de5
oai_identifier_str oai:ri.conicet.gov.ar:11336/44276
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Derivative expansion for the electromagnetic and Neumann-Casimir effects in 2+1 dimensions with imperfect mirrorsFosco, Cesar DanielLombardo, Fernando CesarMazzitelli, Francisco DiegoCasimir effectsDerivative expansionhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We calculate the Casimir interaction energy in d = 2 spatial dimensions between two (zero-width) mirrors -one flat and the other slightly curved- upon which imperfect conductor boundary conditions are imposed for an electromagnetic (EM) field. Our main result is a second-order derivative expansion (DE) approximation for the Casimir energy, which is studied in different interesting limits. In particular, we focus on the emergence of a nonanalyticity beyond the leading-order term in the DE, when approaching the limit of perfectly conducting mirrors. We also show that the system considered is equivalent to a dual one, consisting of a massless real scalar field satisfying imperfect Neumann conditions (on the very same boundaries). Therefore, the results obtained for the EM field hold true also for the scalar field model.Fil: Fosco, Cesar Daniel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lombardo, Fernando Cesar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Mazzitelli, Francisco Diego. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmerican Physical Society2015-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/44276Fosco, Cesar Daniel; Lombardo, Fernando Cesar; Mazzitelli, Francisco Diego; Derivative expansion for the electromagnetic and Neumann-Casimir effects in 2+1 dimensions with imperfect mirrors; American Physical Society; Physical Review D; 91; 10; 5-2015; 1-9; 1050190556-2821CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.91.105019info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.91.105019info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1503.02913info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:48:07Zoai:ri.conicet.gov.ar:11336/44276instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:48:07.994CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Derivative expansion for the electromagnetic and Neumann-Casimir effects in 2+1 dimensions with imperfect mirrors
title Derivative expansion for the electromagnetic and Neumann-Casimir effects in 2+1 dimensions with imperfect mirrors
spellingShingle Derivative expansion for the electromagnetic and Neumann-Casimir effects in 2+1 dimensions with imperfect mirrors
Fosco, Cesar Daniel
Casimir effects
Derivative expansion
title_short Derivative expansion for the electromagnetic and Neumann-Casimir effects in 2+1 dimensions with imperfect mirrors
title_full Derivative expansion for the electromagnetic and Neumann-Casimir effects in 2+1 dimensions with imperfect mirrors
title_fullStr Derivative expansion for the electromagnetic and Neumann-Casimir effects in 2+1 dimensions with imperfect mirrors
title_full_unstemmed Derivative expansion for the electromagnetic and Neumann-Casimir effects in 2+1 dimensions with imperfect mirrors
title_sort Derivative expansion for the electromagnetic and Neumann-Casimir effects in 2+1 dimensions with imperfect mirrors
dc.creator.none.fl_str_mv Fosco, Cesar Daniel
Lombardo, Fernando Cesar
Mazzitelli, Francisco Diego
author Fosco, Cesar Daniel
author_facet Fosco, Cesar Daniel
Lombardo, Fernando Cesar
Mazzitelli, Francisco Diego
author_role author
author2 Lombardo, Fernando Cesar
Mazzitelli, Francisco Diego
author2_role author
author
dc.subject.none.fl_str_mv Casimir effects
Derivative expansion
topic Casimir effects
Derivative expansion
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We calculate the Casimir interaction energy in d = 2 spatial dimensions between two (zero-width) mirrors -one flat and the other slightly curved- upon which imperfect conductor boundary conditions are imposed for an electromagnetic (EM) field. Our main result is a second-order derivative expansion (DE) approximation for the Casimir energy, which is studied in different interesting limits. In particular, we focus on the emergence of a nonanalyticity beyond the leading-order term in the DE, when approaching the limit of perfectly conducting mirrors. We also show that the system considered is equivalent to a dual one, consisting of a massless real scalar field satisfying imperfect Neumann conditions (on the very same boundaries). Therefore, the results obtained for the EM field hold true also for the scalar field model.
Fil: Fosco, Cesar Daniel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lombardo, Fernando Cesar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Mazzitelli, Francisco Diego. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description We calculate the Casimir interaction energy in d = 2 spatial dimensions between two (zero-width) mirrors -one flat and the other slightly curved- upon which imperfect conductor boundary conditions are imposed for an electromagnetic (EM) field. Our main result is a second-order derivative expansion (DE) approximation for the Casimir energy, which is studied in different interesting limits. In particular, we focus on the emergence of a nonanalyticity beyond the leading-order term in the DE, when approaching the limit of perfectly conducting mirrors. We also show that the system considered is equivalent to a dual one, consisting of a massless real scalar field satisfying imperfect Neumann conditions (on the very same boundaries). Therefore, the results obtained for the EM field hold true also for the scalar field model.
publishDate 2015
dc.date.none.fl_str_mv 2015-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/44276
Fosco, Cesar Daniel; Lombardo, Fernando Cesar; Mazzitelli, Francisco Diego; Derivative expansion for the electromagnetic and Neumann-Casimir effects in 2+1 dimensions with imperfect mirrors; American Physical Society; Physical Review D; 91; 10; 5-2015; 1-9; 105019
0556-2821
CONICET Digital
CONICET
url http://hdl.handle.net/11336/44276
identifier_str_mv Fosco, Cesar Daniel; Lombardo, Fernando Cesar; Mazzitelli, Francisco Diego; Derivative expansion for the electromagnetic and Neumann-Casimir effects in 2+1 dimensions with imperfect mirrors; American Physical Society; Physical Review D; 91; 10; 5-2015; 1-9; 105019
0556-2821
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.91.105019
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.91.105019
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1503.02913
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268904569700352
score 13.13397