Hypermutator pseudomonas aeruginosa exploits multiple genetic pathways to develop multidrug resistance during long-term infections in the airways of cystic fibrosis patients

Autores
Colque, Claudia Antonella; Albarracín Orio, Andrea Georgina; Feliziani, S.; Marvig, R. L.; Tobares, Romina Alín; Johansen, H.K.; Molin, S.; Smania, Andrea
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Pseudomonas aeruginosa exploits intrinsic and acquired resistance mechanisms to resist almost every antibiotic used in chemotherapy. Antimicrobial resistance in P. aeruginosa isolates recovered from cystic fibrosis (CF) patients is further enhanced by the occurrence of hypermutator strains, a hallmark of chronic infections in CF patients. However, the within-patient genetic diversity of P. aeruginosa populations related to antibiotic resistance remains unexplored. Here, we show the evolution of the mutational resistome profile of a P. aeruginosa hypermutator lineage by performing longitudinal and transversal analyses of isolates collected from a CF patient throughout 20 years of chronic infection. Our results show the accumulation of thousands of mutations, with an overall evolutionary history characterized by purifying selection. However, mutations in antibiotic resistance genes appear to have been positively selected, driven by antibiotic treatment. Antibiotic resistance increased as infection progressed toward the establishment of a population constituted by genotypically diversified coexisting sublineages, all of which converged to multidrug resistance. These sublineages emerged by parallel evolution through distinct evolutionary pathways, which affected genes of the same functional categories. Interestingly, ampC and ftsI, encoding the β-lactamase and penicillin-binding protein 3, respectively, were found to be among the most frequently mutated genes. In fact, both genes were targeted by multiple independent mutational events, which led to a wide diversity of coexisting alleles underlying β-lactam resistance. Our findings indicate that hypermutators, apart from boosting antibiotic resistance evolution by simultaneously targeting several genes, favor the emergence of adaptive innovative alleles by clustering beneficial/compensatory mutations in the same gene, hence expanding P. aeruginosa strategies for persistence.
Fil: Colque, Claudia Antonella. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; Argentina
Fil: Albarracín Orio, Andrea Georgina. Universidad Católica de Córdoba. Instituto de Investigaciones en Recursos Naturales y Sustentabilidad José Sanchez Labrador S. J. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Recursos Naturales y Sustentabilidad José Sanchez Labrador S. J.; Argentina
Fil: Feliziani, S.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; Argentina
Fil: Marvig, R. L.. Rigshospitalet. Center for Genomic Medicine; Dinamarca
Fil: Tobares, Romina Alín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; Argentina
Fil: Johansen, H.K.. Department Of Clinical Microbiology, Rigshospitalet; Dinamarca. University Of Copenhagen. Faculty Of Health And Medical Sciences.; Dinamarca
Fil: Molin, S.. Technical University of Denmark; Dinamarca
Fil: Smania, Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; Argentina
Materia
AMPC
CYSTIC FIBROSIS
FTSI
HYPERMUTABILITY
MULTIDRUG RESISTANCE
PSEUDOMONAS AERUGINOSA
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/129077

id CONICETDig_25aa458842733ee9fc699c736a1f68cc
oai_identifier_str oai:ri.conicet.gov.ar:11336/129077
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Hypermutator pseudomonas aeruginosa exploits multiple genetic pathways to develop multidrug resistance during long-term infections in the airways of cystic fibrosis patientsColque, Claudia AntonellaAlbarracín Orio, Andrea GeorginaFeliziani, S.Marvig, R. L.Tobares, Romina AlínJohansen, H.K.Molin, S.Smania, AndreaAMPCCYSTIC FIBROSISFTSIHYPERMUTABILITYMULTIDRUG RESISTANCEPSEUDOMONAS AERUGINOSAhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Pseudomonas aeruginosa exploits intrinsic and acquired resistance mechanisms to resist almost every antibiotic used in chemotherapy. Antimicrobial resistance in P. aeruginosa isolates recovered from cystic fibrosis (CF) patients is further enhanced by the occurrence of hypermutator strains, a hallmark of chronic infections in CF patients. However, the within-patient genetic diversity of P. aeruginosa populations related to antibiotic resistance remains unexplored. Here, we show the evolution of the mutational resistome profile of a P. aeruginosa hypermutator lineage by performing longitudinal and transversal analyses of isolates collected from a CF patient throughout 20 years of chronic infection. Our results show the accumulation of thousands of mutations, with an overall evolutionary history characterized by purifying selection. However, mutations in antibiotic resistance genes appear to have been positively selected, driven by antibiotic treatment. Antibiotic resistance increased as infection progressed toward the establishment of a population constituted by genotypically diversified coexisting sublineages, all of which converged to multidrug resistance. These sublineages emerged by parallel evolution through distinct evolutionary pathways, which affected genes of the same functional categories. Interestingly, ampC and ftsI, encoding the β-lactamase and penicillin-binding protein 3, respectively, were found to be among the most frequently mutated genes. In fact, both genes were targeted by multiple independent mutational events, which led to a wide diversity of coexisting alleles underlying β-lactam resistance. Our findings indicate that hypermutators, apart from boosting antibiotic resistance evolution by simultaneously targeting several genes, favor the emergence of adaptive innovative alleles by clustering beneficial/compensatory mutations in the same gene, hence expanding P. aeruginosa strategies for persistence.Fil: Colque, Claudia Antonella. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; ArgentinaFil: Albarracín Orio, Andrea Georgina. Universidad Católica de Córdoba. Instituto de Investigaciones en Recursos Naturales y Sustentabilidad José Sanchez Labrador S. J. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Recursos Naturales y Sustentabilidad José Sanchez Labrador S. J.; ArgentinaFil: Feliziani, S.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; ArgentinaFil: Marvig, R. L.. Rigshospitalet. Center for Genomic Medicine; DinamarcaFil: Tobares, Romina Alín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; ArgentinaFil: Johansen, H.K.. Department Of Clinical Microbiology, Rigshospitalet; Dinamarca. University Of Copenhagen. Faculty Of Health And Medical Sciences.; DinamarcaFil: Molin, S.. Technical University of Denmark; DinamarcaFil: Smania, Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; ArgentinaAmerican Society for Microbiology2019-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/129077Colque, Claudia Antonella; Albarracín Orio, Andrea Georgina; Feliziani, S.; Marvig, R. L.; Tobares, Romina Alín; et al.; Hypermutator pseudomonas aeruginosa exploits multiple genetic pathways to develop multidrug resistance during long-term infections in the airways of cystic fibrosis patients; American Society for Microbiology; Antimicrobial Agents and Chemotherapy; 64; 5; 10-2019; 1-380066-48041098-6596CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubmed.ncbi.nlm.nih.gov/32071060/info:eu-repo/semantics/altIdentifier/doi/10.1128/aac.02142-19info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:55:40Zoai:ri.conicet.gov.ar:11336/129077instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:55:41.122CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Hypermutator pseudomonas aeruginosa exploits multiple genetic pathways to develop multidrug resistance during long-term infections in the airways of cystic fibrosis patients
title Hypermutator pseudomonas aeruginosa exploits multiple genetic pathways to develop multidrug resistance during long-term infections in the airways of cystic fibrosis patients
spellingShingle Hypermutator pseudomonas aeruginosa exploits multiple genetic pathways to develop multidrug resistance during long-term infections in the airways of cystic fibrosis patients
Colque, Claudia Antonella
AMPC
CYSTIC FIBROSIS
FTSI
HYPERMUTABILITY
MULTIDRUG RESISTANCE
PSEUDOMONAS AERUGINOSA
title_short Hypermutator pseudomonas aeruginosa exploits multiple genetic pathways to develop multidrug resistance during long-term infections in the airways of cystic fibrosis patients
title_full Hypermutator pseudomonas aeruginosa exploits multiple genetic pathways to develop multidrug resistance during long-term infections in the airways of cystic fibrosis patients
title_fullStr Hypermutator pseudomonas aeruginosa exploits multiple genetic pathways to develop multidrug resistance during long-term infections in the airways of cystic fibrosis patients
title_full_unstemmed Hypermutator pseudomonas aeruginosa exploits multiple genetic pathways to develop multidrug resistance during long-term infections in the airways of cystic fibrosis patients
title_sort Hypermutator pseudomonas aeruginosa exploits multiple genetic pathways to develop multidrug resistance during long-term infections in the airways of cystic fibrosis patients
dc.creator.none.fl_str_mv Colque, Claudia Antonella
Albarracín Orio, Andrea Georgina
Feliziani, S.
Marvig, R. L.
Tobares, Romina Alín
Johansen, H.K.
Molin, S.
Smania, Andrea
author Colque, Claudia Antonella
author_facet Colque, Claudia Antonella
Albarracín Orio, Andrea Georgina
Feliziani, S.
Marvig, R. L.
Tobares, Romina Alín
Johansen, H.K.
Molin, S.
Smania, Andrea
author_role author
author2 Albarracín Orio, Andrea Georgina
Feliziani, S.
Marvig, R. L.
Tobares, Romina Alín
Johansen, H.K.
Molin, S.
Smania, Andrea
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv AMPC
CYSTIC FIBROSIS
FTSI
HYPERMUTABILITY
MULTIDRUG RESISTANCE
PSEUDOMONAS AERUGINOSA
topic AMPC
CYSTIC FIBROSIS
FTSI
HYPERMUTABILITY
MULTIDRUG RESISTANCE
PSEUDOMONAS AERUGINOSA
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Pseudomonas aeruginosa exploits intrinsic and acquired resistance mechanisms to resist almost every antibiotic used in chemotherapy. Antimicrobial resistance in P. aeruginosa isolates recovered from cystic fibrosis (CF) patients is further enhanced by the occurrence of hypermutator strains, a hallmark of chronic infections in CF patients. However, the within-patient genetic diversity of P. aeruginosa populations related to antibiotic resistance remains unexplored. Here, we show the evolution of the mutational resistome profile of a P. aeruginosa hypermutator lineage by performing longitudinal and transversal analyses of isolates collected from a CF patient throughout 20 years of chronic infection. Our results show the accumulation of thousands of mutations, with an overall evolutionary history characterized by purifying selection. However, mutations in antibiotic resistance genes appear to have been positively selected, driven by antibiotic treatment. Antibiotic resistance increased as infection progressed toward the establishment of a population constituted by genotypically diversified coexisting sublineages, all of which converged to multidrug resistance. These sublineages emerged by parallel evolution through distinct evolutionary pathways, which affected genes of the same functional categories. Interestingly, ampC and ftsI, encoding the β-lactamase and penicillin-binding protein 3, respectively, were found to be among the most frequently mutated genes. In fact, both genes were targeted by multiple independent mutational events, which led to a wide diversity of coexisting alleles underlying β-lactam resistance. Our findings indicate that hypermutators, apart from boosting antibiotic resistance evolution by simultaneously targeting several genes, favor the emergence of adaptive innovative alleles by clustering beneficial/compensatory mutations in the same gene, hence expanding P. aeruginosa strategies for persistence.
Fil: Colque, Claudia Antonella. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; Argentina
Fil: Albarracín Orio, Andrea Georgina. Universidad Católica de Córdoba. Instituto de Investigaciones en Recursos Naturales y Sustentabilidad José Sanchez Labrador S. J. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Recursos Naturales y Sustentabilidad José Sanchez Labrador S. J.; Argentina
Fil: Feliziani, S.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; Argentina
Fil: Marvig, R. L.. Rigshospitalet. Center for Genomic Medicine; Dinamarca
Fil: Tobares, Romina Alín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; Argentina
Fil: Johansen, H.K.. Department Of Clinical Microbiology, Rigshospitalet; Dinamarca. University Of Copenhagen. Faculty Of Health And Medical Sciences.; Dinamarca
Fil: Molin, S.. Technical University of Denmark; Dinamarca
Fil: Smania, Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; Argentina
description Pseudomonas aeruginosa exploits intrinsic and acquired resistance mechanisms to resist almost every antibiotic used in chemotherapy. Antimicrobial resistance in P. aeruginosa isolates recovered from cystic fibrosis (CF) patients is further enhanced by the occurrence of hypermutator strains, a hallmark of chronic infections in CF patients. However, the within-patient genetic diversity of P. aeruginosa populations related to antibiotic resistance remains unexplored. Here, we show the evolution of the mutational resistome profile of a P. aeruginosa hypermutator lineage by performing longitudinal and transversal analyses of isolates collected from a CF patient throughout 20 years of chronic infection. Our results show the accumulation of thousands of mutations, with an overall evolutionary history characterized by purifying selection. However, mutations in antibiotic resistance genes appear to have been positively selected, driven by antibiotic treatment. Antibiotic resistance increased as infection progressed toward the establishment of a population constituted by genotypically diversified coexisting sublineages, all of which converged to multidrug resistance. These sublineages emerged by parallel evolution through distinct evolutionary pathways, which affected genes of the same functional categories. Interestingly, ampC and ftsI, encoding the β-lactamase and penicillin-binding protein 3, respectively, were found to be among the most frequently mutated genes. In fact, both genes were targeted by multiple independent mutational events, which led to a wide diversity of coexisting alleles underlying β-lactam resistance. Our findings indicate that hypermutators, apart from boosting antibiotic resistance evolution by simultaneously targeting several genes, favor the emergence of adaptive innovative alleles by clustering beneficial/compensatory mutations in the same gene, hence expanding P. aeruginosa strategies for persistence.
publishDate 2019
dc.date.none.fl_str_mv 2019-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/129077
Colque, Claudia Antonella; Albarracín Orio, Andrea Georgina; Feliziani, S.; Marvig, R. L.; Tobares, Romina Alín; et al.; Hypermutator pseudomonas aeruginosa exploits multiple genetic pathways to develop multidrug resistance during long-term infections in the airways of cystic fibrosis patients; American Society for Microbiology; Antimicrobial Agents and Chemotherapy; 64; 5; 10-2019; 1-38
0066-4804
1098-6596
CONICET Digital
CONICET
url http://hdl.handle.net/11336/129077
identifier_str_mv Colque, Claudia Antonella; Albarracín Orio, Andrea Georgina; Feliziani, S.; Marvig, R. L.; Tobares, Romina Alín; et al.; Hypermutator pseudomonas aeruginosa exploits multiple genetic pathways to develop multidrug resistance during long-term infections in the airways of cystic fibrosis patients; American Society for Microbiology; Antimicrobial Agents and Chemotherapy; 64; 5; 10-2019; 1-38
0066-4804
1098-6596
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pubmed.ncbi.nlm.nih.gov/32071060/
info:eu-repo/semantics/altIdentifier/doi/10.1128/aac.02142-19
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Society for Microbiology
publisher.none.fl_str_mv American Society for Microbiology
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613676803293184
score 13.070432