Uso de redes neuronales artificiales para la estimación de la radiación solar horaria bajo diferentes condiciones de cielo

Autores
Olivera, Lucas Maximiliano; Atia, Julissa; Amet, Leonardo Javier; Osio, Jorge Rafael; Morales, Martín; Cappelletti, Marcelo Ángel
Año de publicación
2020
Idioma
español castellano
Tipo de recurso
artículo
Estado
versión publicada
Descripción
La radiación solar es un factor clave en numerosas aplicaciones, tales como sistemas fotovoltaicos o térmicos, en la arquitectura y en la agricultura. Sin embargo, no siempre es posible contar con datos experimentales de radiación solar en los lugares de interés. Por esta razón, anteriormente, una amplia variedad de modelos teóricos han sido desarrollados con el fin de estimar este parámetro. Este trabajo presenta un análisis comparativo de modelos de redes neuronales artificiales para la estimación de la radiación solar global horaria en la localidad de Florencio Varela, provincia de Buenos Aires, a partir de variables meteorológicas de sencilla obtención (temperatura y humedad relativa). Los resultados obtenidos muestran un pobre desempeño de los modelos cuando son entrenados con diferentes condiciones de cielo. Esto se debe fundamentalmente al conjunto limitado de datos utilizado y a la gran dispersión de valores de radiación solar medidos. Por el contrario, cuando se utiliza el índice de claridad Kt, y los modelos son entrenados con datos correspondientes a la condición de cielo despejado (Kt > 0.6), los errores de estimación se reducen significativamente. Estos modelos podrían aplicarse en lugares donde no se dispone de valores de radiación solar medidos.
Solar radiation is a key factor in many applications, such as photovoltaic or thermal systems, architecture and agriculture. However, experimental data on solar radiation may not be available in all geographical areas. For this reason, in the past, a wide variety of theoretical models have been developed in order to estimate this parameter. This paper presents a comparativeanalysis of artificial neural network modelsfor estimating the hourly global solarradiationin Florencio Varela, province of Buenos Aires, from easilyobtainedmeteorologicaldata (temperature and relativehumidity). The results obtained show a poor performance of the models when they are trained with different sky conditions.This is mainly due to the limited data set used and the large dispersion of measured solar radiation values.On the contrary, when the clarity index Kt is used,and the models are trained with data corresponding to the clear sky condition (Kt> 0.6),the estimation errors are significantly reduced.These models could be applied at sites wheremeasured solar radiation values are unavailable.
Fil: Olivera, Lucas Maximiliano. Universidad Nacional Arturo Jauretche; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina
Fil: Atia, Julissa. Universidad Nacional Arturo Jauretche; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina
Fil: Amet, Leonardo Javier. Universidad Nacional Arturo Jauretche; Argentina
Fil: Osio, Jorge Rafael. Universidad Nacional Arturo Jauretche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina
Fil: Morales, Martín. Universidad Nacional Arturo Jauretche; Argentina. Universidad Tecnológica Nacional; Argentina
Fil: Cappelletti, Marcelo Ángel. Universidad Nacional Arturo Jauretche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina
Materia
Radiación Solar
Redes neuronales artificiales
Nubosidad
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/140767

id CONICETDig_24c81da6ec217f81d5a6c9deff6881d7
oai_identifier_str oai:ri.conicet.gov.ar:11336/140767
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Uso de redes neuronales artificiales para la estimación de la radiación solar horaria bajo diferentes condiciones de cieloOlivera, Lucas MaximilianoAtia, JulissaAmet, Leonardo JavierOsio, Jorge RafaelMorales, MartínCappelletti, Marcelo ÁngelRadiación SolarRedes neuronales artificialesNubosidadhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2La radiación solar es un factor clave en numerosas aplicaciones, tales como sistemas fotovoltaicos o térmicos, en la arquitectura y en la agricultura. Sin embargo, no siempre es posible contar con datos experimentales de radiación solar en los lugares de interés. Por esta razón, anteriormente, una amplia variedad de modelos teóricos han sido desarrollados con el fin de estimar este parámetro. Este trabajo presenta un análisis comparativo de modelos de redes neuronales artificiales para la estimación de la radiación solar global horaria en la localidad de Florencio Varela, provincia de Buenos Aires, a partir de variables meteorológicas de sencilla obtención (temperatura y humedad relativa). Los resultados obtenidos muestran un pobre desempeño de los modelos cuando son entrenados con diferentes condiciones de cielo. Esto se debe fundamentalmente al conjunto limitado de datos utilizado y a la gran dispersión de valores de radiación solar medidos. Por el contrario, cuando se utiliza el índice de claridad Kt, y los modelos son entrenados con datos correspondientes a la condición de cielo despejado (Kt > 0.6), los errores de estimación se reducen significativamente. Estos modelos podrían aplicarse en lugares donde no se dispone de valores de radiación solar medidos.Solar radiation is a key factor in many applications, such as photovoltaic or thermal systems, architecture and agriculture. However, experimental data on solar radiation may not be available in all geographical areas. For this reason, in the past, a wide variety of theoretical models have been developed in order to estimate this parameter. This paper presents a comparativeanalysis of artificial neural network modelsfor estimating the hourly global solarradiationin Florencio Varela, province of Buenos Aires, from easilyobtainedmeteorologicaldata (temperature and relativehumidity). The results obtained show a poor performance of the models when they are trained with different sky conditions.This is mainly due to the limited data set used and the large dispersion of measured solar radiation values.On the contrary, when the clarity index Kt is used,and the models are trained with data corresponding to the clear sky condition (Kt> 0.6),the estimation errors are significantly reduced.These models could be applied at sites wheremeasured solar radiation values are unavailable.Fil: Olivera, Lucas Maximiliano. Universidad Nacional Arturo Jauretche; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; ArgentinaFil: Atia, Julissa. Universidad Nacional Arturo Jauretche; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; ArgentinaFil: Amet, Leonardo Javier. Universidad Nacional Arturo Jauretche; ArgentinaFil: Osio, Jorge Rafael. Universidad Nacional Arturo Jauretche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; ArgentinaFil: Morales, Martín. Universidad Nacional Arturo Jauretche; Argentina. Universidad Tecnológica Nacional; ArgentinaFil: Cappelletti, Marcelo Ángel. Universidad Nacional Arturo Jauretche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; ArgentinaAsociación Argentina de Energías Renovables y Ambiente2020-12-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/140767Olivera, Lucas Maximiliano; Atia, Julissa; Amet, Leonardo Javier; Osio, Jorge Rafael; Morales, Martín; et al.; Uso de redes neuronales artificiales para la estimación de la radiación solar horaria bajo diferentes condiciones de cielo; Asociación Argentina de Energías Renovables y Ambiente; Avances en Energías Renovables y Medio Ambiente; 24; 30-12-2020; 232-2430329-51842314-1433CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/https://avermaexa.unsa.edu.ar/index.php/averma/article/view/30info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:06:55Zoai:ri.conicet.gov.ar:11336/140767instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:06:55.93CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Uso de redes neuronales artificiales para la estimación de la radiación solar horaria bajo diferentes condiciones de cielo
title Uso de redes neuronales artificiales para la estimación de la radiación solar horaria bajo diferentes condiciones de cielo
spellingShingle Uso de redes neuronales artificiales para la estimación de la radiación solar horaria bajo diferentes condiciones de cielo
Olivera, Lucas Maximiliano
Radiación Solar
Redes neuronales artificiales
Nubosidad
title_short Uso de redes neuronales artificiales para la estimación de la radiación solar horaria bajo diferentes condiciones de cielo
title_full Uso de redes neuronales artificiales para la estimación de la radiación solar horaria bajo diferentes condiciones de cielo
title_fullStr Uso de redes neuronales artificiales para la estimación de la radiación solar horaria bajo diferentes condiciones de cielo
title_full_unstemmed Uso de redes neuronales artificiales para la estimación de la radiación solar horaria bajo diferentes condiciones de cielo
title_sort Uso de redes neuronales artificiales para la estimación de la radiación solar horaria bajo diferentes condiciones de cielo
dc.creator.none.fl_str_mv Olivera, Lucas Maximiliano
Atia, Julissa
Amet, Leonardo Javier
Osio, Jorge Rafael
Morales, Martín
Cappelletti, Marcelo Ángel
author Olivera, Lucas Maximiliano
author_facet Olivera, Lucas Maximiliano
Atia, Julissa
Amet, Leonardo Javier
Osio, Jorge Rafael
Morales, Martín
Cappelletti, Marcelo Ángel
author_role author
author2 Atia, Julissa
Amet, Leonardo Javier
Osio, Jorge Rafael
Morales, Martín
Cappelletti, Marcelo Ángel
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Radiación Solar
Redes neuronales artificiales
Nubosidad
topic Radiación Solar
Redes neuronales artificiales
Nubosidad
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv La radiación solar es un factor clave en numerosas aplicaciones, tales como sistemas fotovoltaicos o térmicos, en la arquitectura y en la agricultura. Sin embargo, no siempre es posible contar con datos experimentales de radiación solar en los lugares de interés. Por esta razón, anteriormente, una amplia variedad de modelos teóricos han sido desarrollados con el fin de estimar este parámetro. Este trabajo presenta un análisis comparativo de modelos de redes neuronales artificiales para la estimación de la radiación solar global horaria en la localidad de Florencio Varela, provincia de Buenos Aires, a partir de variables meteorológicas de sencilla obtención (temperatura y humedad relativa). Los resultados obtenidos muestran un pobre desempeño de los modelos cuando son entrenados con diferentes condiciones de cielo. Esto se debe fundamentalmente al conjunto limitado de datos utilizado y a la gran dispersión de valores de radiación solar medidos. Por el contrario, cuando se utiliza el índice de claridad Kt, y los modelos son entrenados con datos correspondientes a la condición de cielo despejado (Kt > 0.6), los errores de estimación se reducen significativamente. Estos modelos podrían aplicarse en lugares donde no se dispone de valores de radiación solar medidos.
Solar radiation is a key factor in many applications, such as photovoltaic or thermal systems, architecture and agriculture. However, experimental data on solar radiation may not be available in all geographical areas. For this reason, in the past, a wide variety of theoretical models have been developed in order to estimate this parameter. This paper presents a comparativeanalysis of artificial neural network modelsfor estimating the hourly global solarradiationin Florencio Varela, province of Buenos Aires, from easilyobtainedmeteorologicaldata (temperature and relativehumidity). The results obtained show a poor performance of the models when they are trained with different sky conditions.This is mainly due to the limited data set used and the large dispersion of measured solar radiation values.On the contrary, when the clarity index Kt is used,and the models are trained with data corresponding to the clear sky condition (Kt> 0.6),the estimation errors are significantly reduced.These models could be applied at sites wheremeasured solar radiation values are unavailable.
Fil: Olivera, Lucas Maximiliano. Universidad Nacional Arturo Jauretche; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina
Fil: Atia, Julissa. Universidad Nacional Arturo Jauretche; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina
Fil: Amet, Leonardo Javier. Universidad Nacional Arturo Jauretche; Argentina
Fil: Osio, Jorge Rafael. Universidad Nacional Arturo Jauretche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina
Fil: Morales, Martín. Universidad Nacional Arturo Jauretche; Argentina. Universidad Tecnológica Nacional; Argentina
Fil: Cappelletti, Marcelo Ángel. Universidad Nacional Arturo Jauretche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina
description La radiación solar es un factor clave en numerosas aplicaciones, tales como sistemas fotovoltaicos o térmicos, en la arquitectura y en la agricultura. Sin embargo, no siempre es posible contar con datos experimentales de radiación solar en los lugares de interés. Por esta razón, anteriormente, una amplia variedad de modelos teóricos han sido desarrollados con el fin de estimar este parámetro. Este trabajo presenta un análisis comparativo de modelos de redes neuronales artificiales para la estimación de la radiación solar global horaria en la localidad de Florencio Varela, provincia de Buenos Aires, a partir de variables meteorológicas de sencilla obtención (temperatura y humedad relativa). Los resultados obtenidos muestran un pobre desempeño de los modelos cuando son entrenados con diferentes condiciones de cielo. Esto se debe fundamentalmente al conjunto limitado de datos utilizado y a la gran dispersión de valores de radiación solar medidos. Por el contrario, cuando se utiliza el índice de claridad Kt, y los modelos son entrenados con datos correspondientes a la condición de cielo despejado (Kt > 0.6), los errores de estimación se reducen significativamente. Estos modelos podrían aplicarse en lugares donde no se dispone de valores de radiación solar medidos.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-30
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/140767
Olivera, Lucas Maximiliano; Atia, Julissa; Amet, Leonardo Javier; Osio, Jorge Rafael; Morales, Martín; et al.; Uso de redes neuronales artificiales para la estimación de la radiación solar horaria bajo diferentes condiciones de cielo; Asociación Argentina de Energías Renovables y Ambiente; Avances en Energías Renovables y Medio Ambiente; 24; 30-12-2020; 232-243
0329-5184
2314-1433
CONICET Digital
CONICET
url http://hdl.handle.net/11336/140767
identifier_str_mv Olivera, Lucas Maximiliano; Atia, Julissa; Amet, Leonardo Javier; Osio, Jorge Rafael; Morales, Martín; et al.; Uso de redes neuronales artificiales para la estimación de la radiación solar horaria bajo diferentes condiciones de cielo; Asociación Argentina de Energías Renovables y Ambiente; Avances en Energías Renovables y Medio Ambiente; 24; 30-12-2020; 232-243
0329-5184
2314-1433
CONICET Digital
CONICET
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://avermaexa.unsa.edu.ar/index.php/averma/article/view/30
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Asociación Argentina de Energías Renovables y Ambiente
publisher.none.fl_str_mv Asociación Argentina de Energías Renovables y Ambiente
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613923674783744
score 13.070432