Algoritmo heurístico de segmentación de imágenes pet utilizando técnicas de inteligencia artificial
- Autores
- Scarinci, Ignacio Emanuel; Pérez, Pedro Antonio; Valente, Mauro Andres
- Año de publicación
- 2021
- Idioma
- español castellano
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- La cantidad de procedimientos de medicina nuclear se ha incrementado notablemente en los últimos años, convirtiendo a éstos en una herramienta cotidiana que alcanza a amplios sectores de la población. En relación al uso terapéutico de la medicina nuclear, la cantidad de nuevas técnicas y el uso de mayor variedad de radioisótopos demandan una cuantificación dosimétrica precisa y de carácter paciente-específico, a los fines de evaluar daños letales al tumor manteniendo niveles aceptables de dosis en tejidos sanos. En el caso particular de los tratamientos teranósticos que permiten la realización conjunta de tratamiento-diagnóstico, se presenta la posibilidad de realizar dosimetría interna guiada por imágenes. En este caso, resulta crítica la segmentación correcta de las imágenes para la identificación de diferentes tejidos y órganos. Por otra parte, las herramientas de la ciencia de datos y la inteligencia artificial se han difundido en varios campos, en particular el procesamiento digital de imágenes. La posibilidad de utilizar modelos de aprendizaje automático para el procesamiento de imágenes digitales surge como una oportunidad promisoria para complementar el análisis clínico por parte de expertos. En este trabajo se presenta un algoritmo heurístico de segmentación no supervisada utilizando conjuntamente técnicas de clustering y aprendizaje automático, basado en la utilización de dos algoritmos: K-Means y HDBSCAN. Los resultados obtenidos muestran la capacidad de segmentado automático de los algoritmos de clustering resultando éstos una herramienta útil para facilitar y acortar los tiempos de segmentación.
The overall quantity of nuclear medicine procedures has increased remarkably in recent years, making them a daily tool capable of reaching wide sectors of the population. Regarding the nuclear medicine therapeutic applications, it is worth noting that there is an increasing demand of novel techniques and greater variety of radioisotopes requiring accurate patient-specific dosimetry aimed at evaluating lethal damage to the tumor while maintaining acceptable dose levels in healthy tissues. Image-guided internal dosimetry appears as particularly suitable for theranostics procedures, which allow the joint implementation of diagnose and treatment. In this case, the correct segmentation of the images is critical for the identification of different tissues and organs. On the other hand, modern tools based on data science and artificial intelligence have spread in several fields, particularly in the digital image processing. The use of machine learning models for digital image processing appears as a promising opportunity to complement clinical analysis by experts. This paper reports about an unsupervised segmentation heuristic algorithm using clustering and machine learning techniques together, based on the use of two algorithms: K-Means and HDBSCAN. The results obtained highlight the capacity of automatic segmentation by means of clustering algorithms, becoming a useful tool to assist clinician experts and shorten the segmentation times.
Fil: Scarinci, Ignacio Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Pérez, Pedro Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Valente, Mauro Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Universidad de La Frontera; Chile - Materia
-
Medicina nuclear
Dosimetría
Inteligencia artificial
Teranóstica - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/163932
Ver los metadatos del registro completo
id |
CONICETDig_24b6e9ded46e3a78546f6fb2e9850df1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/163932 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Algoritmo heurístico de segmentación de imágenes pet utilizando técnicas de inteligencia artificialHeuristic algorithm for pet images’ segmentation using artificial inteligence techniquesScarinci, Ignacio EmanuelPérez, Pedro AntonioValente, Mauro AndresMedicina nuclearDosimetríaInteligencia artificialTeranósticahttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1La cantidad de procedimientos de medicina nuclear se ha incrementado notablemente en los últimos años, convirtiendo a éstos en una herramienta cotidiana que alcanza a amplios sectores de la población. En relación al uso terapéutico de la medicina nuclear, la cantidad de nuevas técnicas y el uso de mayor variedad de radioisótopos demandan una cuantificación dosimétrica precisa y de carácter paciente-específico, a los fines de evaluar daños letales al tumor manteniendo niveles aceptables de dosis en tejidos sanos. En el caso particular de los tratamientos teranósticos que permiten la realización conjunta de tratamiento-diagnóstico, se presenta la posibilidad de realizar dosimetría interna guiada por imágenes. En este caso, resulta crítica la segmentación correcta de las imágenes para la identificación de diferentes tejidos y órganos. Por otra parte, las herramientas de la ciencia de datos y la inteligencia artificial se han difundido en varios campos, en particular el procesamiento digital de imágenes. La posibilidad de utilizar modelos de aprendizaje automático para el procesamiento de imágenes digitales surge como una oportunidad promisoria para complementar el análisis clínico por parte de expertos. En este trabajo se presenta un algoritmo heurístico de segmentación no supervisada utilizando conjuntamente técnicas de clustering y aprendizaje automático, basado en la utilización de dos algoritmos: K-Means y HDBSCAN. Los resultados obtenidos muestran la capacidad de segmentado automático de los algoritmos de clustering resultando éstos una herramienta útil para facilitar y acortar los tiempos de segmentación.The overall quantity of nuclear medicine procedures has increased remarkably in recent years, making them a daily tool capable of reaching wide sectors of the population. Regarding the nuclear medicine therapeutic applications, it is worth noting that there is an increasing demand of novel techniques and greater variety of radioisotopes requiring accurate patient-specific dosimetry aimed at evaluating lethal damage to the tumor while maintaining acceptable dose levels in healthy tissues. Image-guided internal dosimetry appears as particularly suitable for theranostics procedures, which allow the joint implementation of diagnose and treatment. In this case, the correct segmentation of the images is critical for the identification of different tissues and organs. On the other hand, modern tools based on data science and artificial intelligence have spread in several fields, particularly in the digital image processing. The use of machine learning models for digital image processing appears as a promising opportunity to complement clinical analysis by experts. This paper reports about an unsupervised segmentation heuristic algorithm using clustering and machine learning techniques together, based on the use of two algorithms: K-Means and HDBSCAN. The results obtained highlight the capacity of automatic segmentation by means of clustering algorithms, becoming a useful tool to assist clinician experts and shorten the segmentation times.Fil: Scarinci, Ignacio Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Pérez, Pedro Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Valente, Mauro Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Universidad de La Frontera; ChileAsociación Física Argentina2021-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/163932Scarinci, Ignacio Emanuel; Pérez, Pedro Antonio; Valente, Mauro Andres; Algoritmo heurístico de segmentación de imágenes pet utilizando técnicas de inteligencia artificial; Asociación Física Argentina; Anales AFA; 31; 4; 1-2021; 165-1710327-358X1850-1168CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/doi/10.31527/analesafa.2020.31.4.165info:eu-repo/semantics/altIdentifier/url/https://anales.fisica.org.ar/journal/index.php/analesafa/article/view/2263info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:14:49Zoai:ri.conicet.gov.ar:11336/163932instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:14:50.127CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Algoritmo heurístico de segmentación de imágenes pet utilizando técnicas de inteligencia artificial Heuristic algorithm for pet images’ segmentation using artificial inteligence techniques |
title |
Algoritmo heurístico de segmentación de imágenes pet utilizando técnicas de inteligencia artificial |
spellingShingle |
Algoritmo heurístico de segmentación de imágenes pet utilizando técnicas de inteligencia artificial Scarinci, Ignacio Emanuel Medicina nuclear Dosimetría Inteligencia artificial Teranóstica |
title_short |
Algoritmo heurístico de segmentación de imágenes pet utilizando técnicas de inteligencia artificial |
title_full |
Algoritmo heurístico de segmentación de imágenes pet utilizando técnicas de inteligencia artificial |
title_fullStr |
Algoritmo heurístico de segmentación de imágenes pet utilizando técnicas de inteligencia artificial |
title_full_unstemmed |
Algoritmo heurístico de segmentación de imágenes pet utilizando técnicas de inteligencia artificial |
title_sort |
Algoritmo heurístico de segmentación de imágenes pet utilizando técnicas de inteligencia artificial |
dc.creator.none.fl_str_mv |
Scarinci, Ignacio Emanuel Pérez, Pedro Antonio Valente, Mauro Andres |
author |
Scarinci, Ignacio Emanuel |
author_facet |
Scarinci, Ignacio Emanuel Pérez, Pedro Antonio Valente, Mauro Andres |
author_role |
author |
author2 |
Pérez, Pedro Antonio Valente, Mauro Andres |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Medicina nuclear Dosimetría Inteligencia artificial Teranóstica |
topic |
Medicina nuclear Dosimetría Inteligencia artificial Teranóstica |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
La cantidad de procedimientos de medicina nuclear se ha incrementado notablemente en los últimos años, convirtiendo a éstos en una herramienta cotidiana que alcanza a amplios sectores de la población. En relación al uso terapéutico de la medicina nuclear, la cantidad de nuevas técnicas y el uso de mayor variedad de radioisótopos demandan una cuantificación dosimétrica precisa y de carácter paciente-específico, a los fines de evaluar daños letales al tumor manteniendo niveles aceptables de dosis en tejidos sanos. En el caso particular de los tratamientos teranósticos que permiten la realización conjunta de tratamiento-diagnóstico, se presenta la posibilidad de realizar dosimetría interna guiada por imágenes. En este caso, resulta crítica la segmentación correcta de las imágenes para la identificación de diferentes tejidos y órganos. Por otra parte, las herramientas de la ciencia de datos y la inteligencia artificial se han difundido en varios campos, en particular el procesamiento digital de imágenes. La posibilidad de utilizar modelos de aprendizaje automático para el procesamiento de imágenes digitales surge como una oportunidad promisoria para complementar el análisis clínico por parte de expertos. En este trabajo se presenta un algoritmo heurístico de segmentación no supervisada utilizando conjuntamente técnicas de clustering y aprendizaje automático, basado en la utilización de dos algoritmos: K-Means y HDBSCAN. Los resultados obtenidos muestran la capacidad de segmentado automático de los algoritmos de clustering resultando éstos una herramienta útil para facilitar y acortar los tiempos de segmentación. The overall quantity of nuclear medicine procedures has increased remarkably in recent years, making them a daily tool capable of reaching wide sectors of the population. Regarding the nuclear medicine therapeutic applications, it is worth noting that there is an increasing demand of novel techniques and greater variety of radioisotopes requiring accurate patient-specific dosimetry aimed at evaluating lethal damage to the tumor while maintaining acceptable dose levels in healthy tissues. Image-guided internal dosimetry appears as particularly suitable for theranostics procedures, which allow the joint implementation of diagnose and treatment. In this case, the correct segmentation of the images is critical for the identification of different tissues and organs. On the other hand, modern tools based on data science and artificial intelligence have spread in several fields, particularly in the digital image processing. The use of machine learning models for digital image processing appears as a promising opportunity to complement clinical analysis by experts. This paper reports about an unsupervised segmentation heuristic algorithm using clustering and machine learning techniques together, based on the use of two algorithms: K-Means and HDBSCAN. The results obtained highlight the capacity of automatic segmentation by means of clustering algorithms, becoming a useful tool to assist clinician experts and shorten the segmentation times. Fil: Scarinci, Ignacio Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina Fil: Pérez, Pedro Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina Fil: Valente, Mauro Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Universidad de La Frontera; Chile |
description |
La cantidad de procedimientos de medicina nuclear se ha incrementado notablemente en los últimos años, convirtiendo a éstos en una herramienta cotidiana que alcanza a amplios sectores de la población. En relación al uso terapéutico de la medicina nuclear, la cantidad de nuevas técnicas y el uso de mayor variedad de radioisótopos demandan una cuantificación dosimétrica precisa y de carácter paciente-específico, a los fines de evaluar daños letales al tumor manteniendo niveles aceptables de dosis en tejidos sanos. En el caso particular de los tratamientos teranósticos que permiten la realización conjunta de tratamiento-diagnóstico, se presenta la posibilidad de realizar dosimetría interna guiada por imágenes. En este caso, resulta crítica la segmentación correcta de las imágenes para la identificación de diferentes tejidos y órganos. Por otra parte, las herramientas de la ciencia de datos y la inteligencia artificial se han difundido en varios campos, en particular el procesamiento digital de imágenes. La posibilidad de utilizar modelos de aprendizaje automático para el procesamiento de imágenes digitales surge como una oportunidad promisoria para complementar el análisis clínico por parte de expertos. En este trabajo se presenta un algoritmo heurístico de segmentación no supervisada utilizando conjuntamente técnicas de clustering y aprendizaje automático, basado en la utilización de dos algoritmos: K-Means y HDBSCAN. Los resultados obtenidos muestran la capacidad de segmentado automático de los algoritmos de clustering resultando éstos una herramienta útil para facilitar y acortar los tiempos de segmentación. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/163932 Scarinci, Ignacio Emanuel; Pérez, Pedro Antonio; Valente, Mauro Andres; Algoritmo heurístico de segmentación de imágenes pet utilizando técnicas de inteligencia artificial; Asociación Física Argentina; Anales AFA; 31; 4; 1-2021; 165-171 0327-358X 1850-1168 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/163932 |
identifier_str_mv |
Scarinci, Ignacio Emanuel; Pérez, Pedro Antonio; Valente, Mauro Andres; Algoritmo heurístico de segmentación de imágenes pet utilizando técnicas de inteligencia artificial; Asociación Física Argentina; Anales AFA; 31; 4; 1-2021; 165-171 0327-358X 1850-1168 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.31527/analesafa.2020.31.4.165 info:eu-repo/semantics/altIdentifier/url/https://anales.fisica.org.ar/journal/index.php/analesafa/article/view/2263 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Asociación Física Argentina |
publisher.none.fl_str_mv |
Asociación Física Argentina |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083296025378816 |
score |
13.22299 |