Free energy and hidden barriers of the β-sheet structure of Prion protein
- Autores
- Paz, Sergio Alexis; Abrams, Cameron F.
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- On-the-fly free-energy parametrization is a new collective variable biasing approach akin to metadynamics with one important distinction: rather than acquiring an accelerated distribution via a history-dependent bias potential, sampling on this distribution is achieved from the beginning of the simulation using temperature-accelerated molecular dynamics. In the present work, we compare the performance of both approaches to compute the free-energy profile along a scalar collective variable measuring the H-bond registry of the β-sheet structure of the mouse Prion protein. Both methods agree on the location of the free-energy minimum, but free-energy profiles from well-tempered metadynamics are subject to a much higher degree of statistical noise due to hidden barriers. The sensitivity of metadynamics to hidden barriers is shown to be a consequence of the history dependence of the bias potential, and we detail the nature of these barriers for the prion β-sheet. In contrast, on-the-fly parametrization is much less sensitive to these barriers and thus displays improved convergence behavior relative to that of metadynamics. While hidden barriers are a frequent and central issue in free-energy methods, on-the-fly free-energy parametrization appears to be a robust and preferable method to confront this issue.
Fil: Paz, Sergio Alexis. Drexel University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Abrams, Cameron F.. Drexel University; Estados Unidos - Materia
-
Temperature Accelerated Dynamics
Free Energy
Prion
Metadynamics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/47384
Ver los metadatos del registro completo
id |
CONICETDig_2460695135dac201251f9c14a5efd848 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/47384 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Free energy and hidden barriers of the β-sheet structure of Prion proteinPaz, Sergio AlexisAbrams, Cameron F.Temperature Accelerated DynamicsFree EnergyPrionMetadynamicshttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1On-the-fly free-energy parametrization is a new collective variable biasing approach akin to metadynamics with one important distinction: rather than acquiring an accelerated distribution via a history-dependent bias potential, sampling on this distribution is achieved from the beginning of the simulation using temperature-accelerated molecular dynamics. In the present work, we compare the performance of both approaches to compute the free-energy profile along a scalar collective variable measuring the H-bond registry of the β-sheet structure of the mouse Prion protein. Both methods agree on the location of the free-energy minimum, but free-energy profiles from well-tempered metadynamics are subject to a much higher degree of statistical noise due to hidden barriers. The sensitivity of metadynamics to hidden barriers is shown to be a consequence of the history dependence of the bias potential, and we detail the nature of these barriers for the prion β-sheet. In contrast, on-the-fly parametrization is much less sensitive to these barriers and thus displays improved convergence behavior relative to that of metadynamics. While hidden barriers are a frequent and central issue in free-energy methods, on-the-fly free-energy parametrization appears to be a robust and preferable method to confront this issue.Fil: Paz, Sergio Alexis. Drexel University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Abrams, Cameron F.. Drexel University; Estados UnidosAmerican Chemical Society2015-09-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/47384Paz, Sergio Alexis; Abrams, Cameron F.; Free energy and hidden barriers of the β-sheet structure of Prion protein; American Chemical Society; Journal of Chemical Theory and Computation; 11; 10; 4-9-2015; 5024–50341549-96181549-9626CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jctc.5b00576info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jctc.5b00576info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:09:57Zoai:ri.conicet.gov.ar:11336/47384instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:09:57.4CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Free energy and hidden barriers of the β-sheet structure of Prion protein |
title |
Free energy and hidden barriers of the β-sheet structure of Prion protein |
spellingShingle |
Free energy and hidden barriers of the β-sheet structure of Prion protein Paz, Sergio Alexis Temperature Accelerated Dynamics Free Energy Prion Metadynamics |
title_short |
Free energy and hidden barriers of the β-sheet structure of Prion protein |
title_full |
Free energy and hidden barriers of the β-sheet structure of Prion protein |
title_fullStr |
Free energy and hidden barriers of the β-sheet structure of Prion protein |
title_full_unstemmed |
Free energy and hidden barriers of the β-sheet structure of Prion protein |
title_sort |
Free energy and hidden barriers of the β-sheet structure of Prion protein |
dc.creator.none.fl_str_mv |
Paz, Sergio Alexis Abrams, Cameron F. |
author |
Paz, Sergio Alexis |
author_facet |
Paz, Sergio Alexis Abrams, Cameron F. |
author_role |
author |
author2 |
Abrams, Cameron F. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Temperature Accelerated Dynamics Free Energy Prion Metadynamics |
topic |
Temperature Accelerated Dynamics Free Energy Prion Metadynamics |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
On-the-fly free-energy parametrization is a new collective variable biasing approach akin to metadynamics with one important distinction: rather than acquiring an accelerated distribution via a history-dependent bias potential, sampling on this distribution is achieved from the beginning of the simulation using temperature-accelerated molecular dynamics. In the present work, we compare the performance of both approaches to compute the free-energy profile along a scalar collective variable measuring the H-bond registry of the β-sheet structure of the mouse Prion protein. Both methods agree on the location of the free-energy minimum, but free-energy profiles from well-tempered metadynamics are subject to a much higher degree of statistical noise due to hidden barriers. The sensitivity of metadynamics to hidden barriers is shown to be a consequence of the history dependence of the bias potential, and we detail the nature of these barriers for the prion β-sheet. In contrast, on-the-fly parametrization is much less sensitive to these barriers and thus displays improved convergence behavior relative to that of metadynamics. While hidden barriers are a frequent and central issue in free-energy methods, on-the-fly free-energy parametrization appears to be a robust and preferable method to confront this issue. Fil: Paz, Sergio Alexis. Drexel University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina Fil: Abrams, Cameron F.. Drexel University; Estados Unidos |
description |
On-the-fly free-energy parametrization is a new collective variable biasing approach akin to metadynamics with one important distinction: rather than acquiring an accelerated distribution via a history-dependent bias potential, sampling on this distribution is achieved from the beginning of the simulation using temperature-accelerated molecular dynamics. In the present work, we compare the performance of both approaches to compute the free-energy profile along a scalar collective variable measuring the H-bond registry of the β-sheet structure of the mouse Prion protein. Both methods agree on the location of the free-energy minimum, but free-energy profiles from well-tempered metadynamics are subject to a much higher degree of statistical noise due to hidden barriers. The sensitivity of metadynamics to hidden barriers is shown to be a consequence of the history dependence of the bias potential, and we detail the nature of these barriers for the prion β-sheet. In contrast, on-the-fly parametrization is much less sensitive to these barriers and thus displays improved convergence behavior relative to that of metadynamics. While hidden barriers are a frequent and central issue in free-energy methods, on-the-fly free-energy parametrization appears to be a robust and preferable method to confront this issue. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-09-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/47384 Paz, Sergio Alexis; Abrams, Cameron F.; Free energy and hidden barriers of the β-sheet structure of Prion protein; American Chemical Society; Journal of Chemical Theory and Computation; 11; 10; 4-9-2015; 5024–5034 1549-9618 1549-9626 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/47384 |
identifier_str_mv |
Paz, Sergio Alexis; Abrams, Cameron F.; Free energy and hidden barriers of the β-sheet structure of Prion protein; American Chemical Society; Journal of Chemical Theory and Computation; 11; 10; 4-9-2015; 5024–5034 1549-9618 1549-9626 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jctc.5b00576 info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jctc.5b00576 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613983637602304 |
score |
13.069144 |