Effect of cellulose microcrystalline particles on properties of cement based composites
- Autores
- Gomez Hoyos, Catalina; Cristia, Emilien; Vazquez, Analia
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The hydrophilic character and water retention capability of cellulose microcrystalline particles (MCC), are useful properties to achieve new developments in cement based materials. This work evaluates the influence of interactions between MCC, cement particles, hydration products and water; on rheology, hydration kinetic, microstructure and mechanical properties of cement based materials. The effect of MCC on mechanical properties of cement mortars with 0 wt% and 3 wt% of MCC, were evaluated by flexural and compression tests within two curing procedures (i) regular curing: specimens were cured 28 days into lime stone saturated solution at room temperature (ii) accelerated curing: specimens were cured into a lime stone saturates solution for 7 days at room temperature followed by 7 days at 50 oC. Finally they were kept in a dry oven at 60 oC for 48 h. Thermogravimetric analysis was used to characterize the effect of curing procedure and MCC addition on hydration degree of cement materials with 0 wt% and 3 wt% of MCC. Results showed that interactions between MCC, cement particles, hydration products and water decreased the workability and delayed the hydration reaction. Additionally, results from thermogravimetric analysis showed that both accelerated curing and MCC addition increased the hydration degree of cement materials because the increase in temperature during the curing process and because MCC release its water content, contributing to hydration process.
Fil: Gomez Hoyos, Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería; Argentina
Fil: Cristia, Emilien. École Normale Supérieure de Cachan. Département Génie Civil; Francia
Fil: Vazquez, Analia. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Tecnologia En Polimeros y Nanotecnologia; Argentina - Materia
-
Cellulos Micro Crystalline
Cement
Rheology
Hydration - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/6568
Ver los metadatos del registro completo
id |
CONICETDig_222d3dfffdc6f30a22ec3d5b3c5ba9c6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/6568 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Effect of cellulose microcrystalline particles on properties of cement based compositesGomez Hoyos, CatalinaCristia, EmilienVazquez, AnaliaCellulos Micro CrystallineCementRheologyHydrationhttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2The hydrophilic character and water retention capability of cellulose microcrystalline particles (MCC), are useful properties to achieve new developments in cement based materials. This work evaluates the influence of interactions between MCC, cement particles, hydration products and water; on rheology, hydration kinetic, microstructure and mechanical properties of cement based materials. The effect of MCC on mechanical properties of cement mortars with 0 wt% and 3 wt% of MCC, were evaluated by flexural and compression tests within two curing procedures (i) regular curing: specimens were cured 28 days into lime stone saturated solution at room temperature (ii) accelerated curing: specimens were cured into a lime stone saturates solution for 7 days at room temperature followed by 7 days at 50 oC. Finally they were kept in a dry oven at 60 oC for 48 h. Thermogravimetric analysis was used to characterize the effect of curing procedure and MCC addition on hydration degree of cement materials with 0 wt% and 3 wt% of MCC. Results showed that interactions between MCC, cement particles, hydration products and water decreased the workability and delayed the hydration reaction. Additionally, results from thermogravimetric analysis showed that both accelerated curing and MCC addition increased the hydration degree of cement materials because the increase in temperature during the curing process and because MCC release its water content, contributing to hydration process.Fil: Gomez Hoyos, Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería; ArgentinaFil: Cristia, Emilien. École Normale Supérieure de Cachan. Département Génie Civil; FranciaFil: Vazquez, Analia. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Tecnologia En Polimeros y Nanotecnologia; ArgentinaElsevier2013-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/6568Gomez Hoyos, Catalina; Cristia, Emilien; Vazquez, Analia; Effect of cellulose microcrystalline particles on properties of cement based composites; Elsevier; Materials & Design; 51; 9-2013; 810-8180261-3069enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S026130691300383Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.matdes.2013.04.060info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:39:45Zoai:ri.conicet.gov.ar:11336/6568instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:39:45.822CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Effect of cellulose microcrystalline particles on properties of cement based composites |
title |
Effect of cellulose microcrystalline particles on properties of cement based composites |
spellingShingle |
Effect of cellulose microcrystalline particles on properties of cement based composites Gomez Hoyos, Catalina Cellulos Micro Crystalline Cement Rheology Hydration |
title_short |
Effect of cellulose microcrystalline particles on properties of cement based composites |
title_full |
Effect of cellulose microcrystalline particles on properties of cement based composites |
title_fullStr |
Effect of cellulose microcrystalline particles on properties of cement based composites |
title_full_unstemmed |
Effect of cellulose microcrystalline particles on properties of cement based composites |
title_sort |
Effect of cellulose microcrystalline particles on properties of cement based composites |
dc.creator.none.fl_str_mv |
Gomez Hoyos, Catalina Cristia, Emilien Vazquez, Analia |
author |
Gomez Hoyos, Catalina |
author_facet |
Gomez Hoyos, Catalina Cristia, Emilien Vazquez, Analia |
author_role |
author |
author2 |
Cristia, Emilien Vazquez, Analia |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Cellulos Micro Crystalline Cement Rheology Hydration |
topic |
Cellulos Micro Crystalline Cement Rheology Hydration |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.10 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The hydrophilic character and water retention capability of cellulose microcrystalline particles (MCC), are useful properties to achieve new developments in cement based materials. This work evaluates the influence of interactions between MCC, cement particles, hydration products and water; on rheology, hydration kinetic, microstructure and mechanical properties of cement based materials. The effect of MCC on mechanical properties of cement mortars with 0 wt% and 3 wt% of MCC, were evaluated by flexural and compression tests within two curing procedures (i) regular curing: specimens were cured 28 days into lime stone saturated solution at room temperature (ii) accelerated curing: specimens were cured into a lime stone saturates solution for 7 days at room temperature followed by 7 days at 50 oC. Finally they were kept in a dry oven at 60 oC for 48 h. Thermogravimetric analysis was used to characterize the effect of curing procedure and MCC addition on hydration degree of cement materials with 0 wt% and 3 wt% of MCC. Results showed that interactions between MCC, cement particles, hydration products and water decreased the workability and delayed the hydration reaction. Additionally, results from thermogravimetric analysis showed that both accelerated curing and MCC addition increased the hydration degree of cement materials because the increase in temperature during the curing process and because MCC release its water content, contributing to hydration process. Fil: Gomez Hoyos, Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería; Argentina Fil: Cristia, Emilien. École Normale Supérieure de Cachan. Département Génie Civil; Francia Fil: Vazquez, Analia. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Tecnologia En Polimeros y Nanotecnologia; Argentina |
description |
The hydrophilic character and water retention capability of cellulose microcrystalline particles (MCC), are useful properties to achieve new developments in cement based materials. This work evaluates the influence of interactions between MCC, cement particles, hydration products and water; on rheology, hydration kinetic, microstructure and mechanical properties of cement based materials. The effect of MCC on mechanical properties of cement mortars with 0 wt% and 3 wt% of MCC, were evaluated by flexural and compression tests within two curing procedures (i) regular curing: specimens were cured 28 days into lime stone saturated solution at room temperature (ii) accelerated curing: specimens were cured into a lime stone saturates solution for 7 days at room temperature followed by 7 days at 50 oC. Finally they were kept in a dry oven at 60 oC for 48 h. Thermogravimetric analysis was used to characterize the effect of curing procedure and MCC addition on hydration degree of cement materials with 0 wt% and 3 wt% of MCC. Results showed that interactions between MCC, cement particles, hydration products and water decreased the workability and delayed the hydration reaction. Additionally, results from thermogravimetric analysis showed that both accelerated curing and MCC addition increased the hydration degree of cement materials because the increase in temperature during the curing process and because MCC release its water content, contributing to hydration process. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/6568 Gomez Hoyos, Catalina; Cristia, Emilien; Vazquez, Analia; Effect of cellulose microcrystalline particles on properties of cement based composites; Elsevier; Materials & Design; 51; 9-2013; 810-818 0261-3069 |
url |
http://hdl.handle.net/11336/6568 |
identifier_str_mv |
Gomez Hoyos, Catalina; Cristia, Emilien; Vazquez, Analia; Effect of cellulose microcrystalline particles on properties of cement based composites; Elsevier; Materials & Design; 51; 9-2013; 810-818 0261-3069 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S026130691300383X info:eu-repo/semantics/altIdentifier/doi/10.1016/j.matdes.2013.04.060 info:eu-repo/semantics/altIdentifier/doi/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614423714463744 |
score |
13.070432 |