A fully classical truth theory characterized by substructural means
- Autores
- Pailos, Federico Matias
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We will present a three-valued consequence relation for metainferences, called CM, defined through ST and TS, two well known substructural consequence relations for inferences. While ST recovers every classically valid inference, it invalidates some classically valid metainferences. While CM works as ST at the inferential level, it also recovers every classically valid metainference. Moreover, CM can be safely expanded with a transparent truth predicate. Nevertheless, CM cannot recapture every classically valid meta-metainference. We will afterwards develop a hierarchy of consequence relations CMn for metainferences of level n (for 1 ≤ n < ω). Each CMn recovers every metainference of level n or less, and can be nontrivially expanded with a transparent truth predicate, but cannot recapture every classically valid metainferences of higher levels. Finally, we will present a logic CMω, based on the hierarchy of logics CMn, that is fully classical, in the sense that every classically valid metainference of any level is valid in it. Moreover, CM can be nontrivially expanded with a transparent truth predicate.
Fil: Pailos, Federico Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Filosóficas. - Sociedad Argentina de Análisis Filosófico. Instituto de Investigaciones Filosóficas; Argentina. Universidad de Buenos Aires; Argentina - Materia
-
LOGIC
METAINFERENCES
METAINFERENTIAL VALIDITY
SUBSTRUCTURAL LOGICS
EMPTY LOGIC - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/124457
Ver los metadatos del registro completo
id |
CONICETDig_217e047802fb36dd50083e13609dce29 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/124457 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A fully classical truth theory characterized by substructural meansPailos, Federico MatiasLOGICMETAINFERENCESMETAINFERENTIAL VALIDITYSUBSTRUCTURAL LOGICSEMPTY LOGIChttps://purl.org/becyt/ford/6.3https://purl.org/becyt/ford/6We will present a three-valued consequence relation for metainferences, called CM, defined through ST and TS, two well known substructural consequence relations for inferences. While ST recovers every classically valid inference, it invalidates some classically valid metainferences. While CM works as ST at the inferential level, it also recovers every classically valid metainference. Moreover, CM can be safely expanded with a transparent truth predicate. Nevertheless, CM cannot recapture every classically valid meta-metainference. We will afterwards develop a hierarchy of consequence relations CMn for metainferences of level n (for 1 ≤ n < ω). Each CMn recovers every metainference of level n or less, and can be nontrivially expanded with a transparent truth predicate, but cannot recapture every classically valid metainferences of higher levels. Finally, we will present a logic CMω, based on the hierarchy of logics CMn, that is fully classical, in the sense that every classically valid metainference of any level is valid in it. Moreover, CM can be nontrivially expanded with a transparent truth predicate.Fil: Pailos, Federico Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Filosóficas. - Sociedad Argentina de Análisis Filosófico. Instituto de Investigaciones Filosóficas; Argentina. Universidad de Buenos Aires; ArgentinaCambridge University Press2019-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/124457Pailos, Federico Matias; A fully classical truth theory characterized by substructural means; Cambridge University Press; Review of Symbolic Logic; 13; 2; 8-2019; 249-2681755-0203CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/review-of-symbolic-logic/article/fully-classical-truth-theory-characterized-by-substructural-means/DF4728BD1185467DE9224CD754B34375info:eu-repo/semantics/altIdentifier/doi/10.1017/S1755020318000485info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:04:13Zoai:ri.conicet.gov.ar:11336/124457instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:04:13.767CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A fully classical truth theory characterized by substructural means |
title |
A fully classical truth theory characterized by substructural means |
spellingShingle |
A fully classical truth theory characterized by substructural means Pailos, Federico Matias LOGIC METAINFERENCES METAINFERENTIAL VALIDITY SUBSTRUCTURAL LOGICS EMPTY LOGIC |
title_short |
A fully classical truth theory characterized by substructural means |
title_full |
A fully classical truth theory characterized by substructural means |
title_fullStr |
A fully classical truth theory characterized by substructural means |
title_full_unstemmed |
A fully classical truth theory characterized by substructural means |
title_sort |
A fully classical truth theory characterized by substructural means |
dc.creator.none.fl_str_mv |
Pailos, Federico Matias |
author |
Pailos, Federico Matias |
author_facet |
Pailos, Federico Matias |
author_role |
author |
dc.subject.none.fl_str_mv |
LOGIC METAINFERENCES METAINFERENTIAL VALIDITY SUBSTRUCTURAL LOGICS EMPTY LOGIC |
topic |
LOGIC METAINFERENCES METAINFERENTIAL VALIDITY SUBSTRUCTURAL LOGICS EMPTY LOGIC |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/6.3 https://purl.org/becyt/ford/6 |
dc.description.none.fl_txt_mv |
We will present a three-valued consequence relation for metainferences, called CM, defined through ST and TS, two well known substructural consequence relations for inferences. While ST recovers every classically valid inference, it invalidates some classically valid metainferences. While CM works as ST at the inferential level, it also recovers every classically valid metainference. Moreover, CM can be safely expanded with a transparent truth predicate. Nevertheless, CM cannot recapture every classically valid meta-metainference. We will afterwards develop a hierarchy of consequence relations CMn for metainferences of level n (for 1 ≤ n < ω). Each CMn recovers every metainference of level n or less, and can be nontrivially expanded with a transparent truth predicate, but cannot recapture every classically valid metainferences of higher levels. Finally, we will present a logic CMω, based on the hierarchy of logics CMn, that is fully classical, in the sense that every classically valid metainference of any level is valid in it. Moreover, CM can be nontrivially expanded with a transparent truth predicate. Fil: Pailos, Federico Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Filosóficas. - Sociedad Argentina de Análisis Filosófico. Instituto de Investigaciones Filosóficas; Argentina. Universidad de Buenos Aires; Argentina |
description |
We will present a three-valued consequence relation for metainferences, called CM, defined through ST and TS, two well known substructural consequence relations for inferences. While ST recovers every classically valid inference, it invalidates some classically valid metainferences. While CM works as ST at the inferential level, it also recovers every classically valid metainference. Moreover, CM can be safely expanded with a transparent truth predicate. Nevertheless, CM cannot recapture every classically valid meta-metainference. We will afterwards develop a hierarchy of consequence relations CMn for metainferences of level n (for 1 ≤ n < ω). Each CMn recovers every metainference of level n or less, and can be nontrivially expanded with a transparent truth predicate, but cannot recapture every classically valid metainferences of higher levels. Finally, we will present a logic CMω, based on the hierarchy of logics CMn, that is fully classical, in the sense that every classically valid metainference of any level is valid in it. Moreover, CM can be nontrivially expanded with a transparent truth predicate. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/124457 Pailos, Federico Matias; A fully classical truth theory characterized by substructural means; Cambridge University Press; Review of Symbolic Logic; 13; 2; 8-2019; 249-268 1755-0203 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/124457 |
identifier_str_mv |
Pailos, Federico Matias; A fully classical truth theory characterized by substructural means; Cambridge University Press; Review of Symbolic Logic; 13; 2; 8-2019; 249-268 1755-0203 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/review-of-symbolic-logic/article/fully-classical-truth-theory-characterized-by-substructural-means/DF4728BD1185467DE9224CD754B34375 info:eu-repo/semantics/altIdentifier/doi/10.1017/S1755020318000485 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Cambridge University Press |
publisher.none.fl_str_mv |
Cambridge University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269844933705728 |
score |
13.13397 |