A fully classical truth theory characterized by substructural means

Autores
Pailos, Federico Matias
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We will present a three-valued consequence relation for metainferences, called CM, defined through ST and TS, two well known substructural consequence relations for inferences. While ST recovers every classically valid inference, it invalidates some classically valid metainferences. While CM works as ST at the inferential level, it also recovers every classically valid metainference. Moreover, CM can be safely expanded with a transparent truth predicate. Nevertheless, CM cannot recapture every classically valid meta-metainference. We will afterwards develop a hierarchy of consequence relations CMn for metainferences of level n (for 1 ≤ n < ω). Each CMn recovers every metainference of level n or less, and can be nontrivially expanded with a transparent truth predicate, but cannot recapture every classically valid metainferences of higher levels. Finally, we will present a logic CMω, based on the hierarchy of logics CMn, that is fully classical, in the sense that every classically valid metainference of any level is valid in it. Moreover, CM can be nontrivially expanded with a transparent truth predicate.
Fil: Pailos, Federico Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Filosóficas. - Sociedad Argentina de Análisis Filosófico. Instituto de Investigaciones Filosóficas; Argentina. Universidad de Buenos Aires; Argentina
Materia
LOGIC
METAINFERENCES
METAINFERENTIAL VALIDITY
SUBSTRUCTURAL LOGICS
EMPTY LOGIC
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/124457

id CONICETDig_217e047802fb36dd50083e13609dce29
oai_identifier_str oai:ri.conicet.gov.ar:11336/124457
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A fully classical truth theory characterized by substructural meansPailos, Federico MatiasLOGICMETAINFERENCESMETAINFERENTIAL VALIDITYSUBSTRUCTURAL LOGICSEMPTY LOGIChttps://purl.org/becyt/ford/6.3https://purl.org/becyt/ford/6We will present a three-valued consequence relation for metainferences, called CM, defined through ST and TS, two well known substructural consequence relations for inferences. While ST recovers every classically valid inference, it invalidates some classically valid metainferences. While CM works as ST at the inferential level, it also recovers every classically valid metainference. Moreover, CM can be safely expanded with a transparent truth predicate. Nevertheless, CM cannot recapture every classically valid meta-metainference. We will afterwards develop a hierarchy of consequence relations CMn for metainferences of level n (for 1 ≤ n < ω). Each CMn recovers every metainference of level n or less, and can be nontrivially expanded with a transparent truth predicate, but cannot recapture every classically valid metainferences of higher levels. Finally, we will present a logic CMω, based on the hierarchy of logics CMn, that is fully classical, in the sense that every classically valid metainference of any level is valid in it. Moreover, CM can be nontrivially expanded with a transparent truth predicate.Fil: Pailos, Federico Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Filosóficas. - Sociedad Argentina de Análisis Filosófico. Instituto de Investigaciones Filosóficas; Argentina. Universidad de Buenos Aires; ArgentinaCambridge University Press2019-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/124457Pailos, Federico Matias; A fully classical truth theory characterized by substructural means; Cambridge University Press; Review of Symbolic Logic; 13; 2; 8-2019; 249-2681755-0203CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/review-of-symbolic-logic/article/fully-classical-truth-theory-characterized-by-substructural-means/DF4728BD1185467DE9224CD754B34375info:eu-repo/semantics/altIdentifier/doi/10.1017/S1755020318000485info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:04:13Zoai:ri.conicet.gov.ar:11336/124457instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:04:13.767CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A fully classical truth theory characterized by substructural means
title A fully classical truth theory characterized by substructural means
spellingShingle A fully classical truth theory characterized by substructural means
Pailos, Federico Matias
LOGIC
METAINFERENCES
METAINFERENTIAL VALIDITY
SUBSTRUCTURAL LOGICS
EMPTY LOGIC
title_short A fully classical truth theory characterized by substructural means
title_full A fully classical truth theory characterized by substructural means
title_fullStr A fully classical truth theory characterized by substructural means
title_full_unstemmed A fully classical truth theory characterized by substructural means
title_sort A fully classical truth theory characterized by substructural means
dc.creator.none.fl_str_mv Pailos, Federico Matias
author Pailos, Federico Matias
author_facet Pailos, Federico Matias
author_role author
dc.subject.none.fl_str_mv LOGIC
METAINFERENCES
METAINFERENTIAL VALIDITY
SUBSTRUCTURAL LOGICS
EMPTY LOGIC
topic LOGIC
METAINFERENCES
METAINFERENTIAL VALIDITY
SUBSTRUCTURAL LOGICS
EMPTY LOGIC
purl_subject.fl_str_mv https://purl.org/becyt/ford/6.3
https://purl.org/becyt/ford/6
dc.description.none.fl_txt_mv We will present a three-valued consequence relation for metainferences, called CM, defined through ST and TS, two well known substructural consequence relations for inferences. While ST recovers every classically valid inference, it invalidates some classically valid metainferences. While CM works as ST at the inferential level, it also recovers every classically valid metainference. Moreover, CM can be safely expanded with a transparent truth predicate. Nevertheless, CM cannot recapture every classically valid meta-metainference. We will afterwards develop a hierarchy of consequence relations CMn for metainferences of level n (for 1 ≤ n < ω). Each CMn recovers every metainference of level n or less, and can be nontrivially expanded with a transparent truth predicate, but cannot recapture every classically valid metainferences of higher levels. Finally, we will present a logic CMω, based on the hierarchy of logics CMn, that is fully classical, in the sense that every classically valid metainference of any level is valid in it. Moreover, CM can be nontrivially expanded with a transparent truth predicate.
Fil: Pailos, Federico Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Filosóficas. - Sociedad Argentina de Análisis Filosófico. Instituto de Investigaciones Filosóficas; Argentina. Universidad de Buenos Aires; Argentina
description We will present a three-valued consequence relation for metainferences, called CM, defined through ST and TS, two well known substructural consequence relations for inferences. While ST recovers every classically valid inference, it invalidates some classically valid metainferences. While CM works as ST at the inferential level, it also recovers every classically valid metainference. Moreover, CM can be safely expanded with a transparent truth predicate. Nevertheless, CM cannot recapture every classically valid meta-metainference. We will afterwards develop a hierarchy of consequence relations CMn for metainferences of level n (for 1 ≤ n < ω). Each CMn recovers every metainference of level n or less, and can be nontrivially expanded with a transparent truth predicate, but cannot recapture every classically valid metainferences of higher levels. Finally, we will present a logic CMω, based on the hierarchy of logics CMn, that is fully classical, in the sense that every classically valid metainference of any level is valid in it. Moreover, CM can be nontrivially expanded with a transparent truth predicate.
publishDate 2019
dc.date.none.fl_str_mv 2019-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/124457
Pailos, Federico Matias; A fully classical truth theory characterized by substructural means; Cambridge University Press; Review of Symbolic Logic; 13; 2; 8-2019; 249-268
1755-0203
CONICET Digital
CONICET
url http://hdl.handle.net/11336/124457
identifier_str_mv Pailos, Federico Matias; A fully classical truth theory characterized by substructural means; Cambridge University Press; Review of Symbolic Logic; 13; 2; 8-2019; 249-268
1755-0203
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/review-of-symbolic-logic/article/fully-classical-truth-theory-characterized-by-substructural-means/DF4728BD1185467DE9224CD754B34375
info:eu-repo/semantics/altIdentifier/doi/10.1017/S1755020318000485
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Cambridge University Press
publisher.none.fl_str_mv Cambridge University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269844933705728
score 13.13397