Inference engine based on closure and join operators over Truth Table Binary Relations
- Autores
- Elloumi, Samir; Boulifa, Bilel; Jaoua, Ali; Saleh, Mohammad; Al Otaibi, Jameela; Frias, Marcelo Fabian
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We propose a conceptual reasoning method for an inference engine. Starting from a knowledge base made of decision rules, we first map each rule to its corresponding Truth Table Binary Relation (TTBR), considered as a formal context. Objects in the domain of TTBR correspond to all possible rule interpretations (in terms of their truth value assignments), and elements in the range of TTBR correspond to the attributes. By using the ‘natural join’ operator in the ‘ContextCombine’ Algorithm, we combine all truth tables into a global relation which has the advantage of containing the complete knowledge of all deducible rules. By conceptual reasoning using closure operators, from the initial rules we obtain all possible conclusions with respect to the global relation. We may then check if expected goals are among these possible conclusions. We also provide an approximate solution for the exponential growth of the global relation, by proposing modular and cooperative conceptual reasoning. We finally present experimental results for two case studies and discuss the effectiveness of our approach.
Fil: Elloumi, Samir. Qatar University; Qatar
Fil: Boulifa, Bilel. Qatar University; Qatar
Fil: Jaoua, Ali. Qatar University; Qatar
Fil: Saleh, Mohammad. Qatar University; Qatar
Fil: Al Otaibi, Jameela. Qatar University; Qatar
Fil: Frias, Marcelo Fabian. Instituto Tecnológico de Buenos Aires. Fac de Ingeniería. Departamento de Informatica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Truth Table Binary Relation
Cooperative Conceptual Reasoning
Closure Operators
Relation Combining
Formal Concept Analysis
Inference Engine - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/33304
Ver los metadatos del registro completo
id |
CONICETDig_20639c62846fee96efeabcf5ecd1e0ff |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/33304 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Inference engine based on closure and join operators over Truth Table Binary RelationsElloumi, SamirBoulifa, BilelJaoua, AliSaleh, MohammadAl Otaibi, JameelaFrias, Marcelo FabianTruth Table Binary RelationCooperative Conceptual ReasoningClosure OperatorsRelation CombiningFormal Concept AnalysisInference Enginehttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1We propose a conceptual reasoning method for an inference engine. Starting from a knowledge base made of decision rules, we first map each rule to its corresponding Truth Table Binary Relation (TTBR), considered as a formal context. Objects in the domain of TTBR correspond to all possible rule interpretations (in terms of their truth value assignments), and elements in the range of TTBR correspond to the attributes. By using the ‘natural join’ operator in the ‘ContextCombine’ Algorithm, we combine all truth tables into a global relation which has the advantage of containing the complete knowledge of all deducible rules. By conceptual reasoning using closure operators, from the initial rules we obtain all possible conclusions with respect to the global relation. We may then check if expected goals are among these possible conclusions. We also provide an approximate solution for the exponential growth of the global relation, by proposing modular and cooperative conceptual reasoning. We finally present experimental results for two case studies and discuss the effectiveness of our approach.Fil: Elloumi, Samir. Qatar University; QatarFil: Boulifa, Bilel. Qatar University; QatarFil: Jaoua, Ali. Qatar University; QatarFil: Saleh, Mohammad. Qatar University; QatarFil: Al Otaibi, Jameela. Qatar University; QatarFil: Frias, Marcelo Fabian. Instituto Tecnológico de Buenos Aires. Fac de Ingeniería. Departamento de Informatica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier2014-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/33304Elloumi, Samir; Boulifa, Bilel; Jaoua, Ali; Saleh, Mohammad; Al Otaibi, Jameela; et al.; Inference engine based on closure and join operators over Truth Table Binary Relations; Elsevier; Journal Of Logic And Algebraic Programming; 83; 2; 2-2014; 180-1931567-8326CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1567832614000083info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jlap.2014.02.007info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:23:44Zoai:ri.conicet.gov.ar:11336/33304instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:23:44.374CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Inference engine based on closure and join operators over Truth Table Binary Relations |
title |
Inference engine based on closure and join operators over Truth Table Binary Relations |
spellingShingle |
Inference engine based on closure and join operators over Truth Table Binary Relations Elloumi, Samir Truth Table Binary Relation Cooperative Conceptual Reasoning Closure Operators Relation Combining Formal Concept Analysis Inference Engine |
title_short |
Inference engine based on closure and join operators over Truth Table Binary Relations |
title_full |
Inference engine based on closure and join operators over Truth Table Binary Relations |
title_fullStr |
Inference engine based on closure and join operators over Truth Table Binary Relations |
title_full_unstemmed |
Inference engine based on closure and join operators over Truth Table Binary Relations |
title_sort |
Inference engine based on closure and join operators over Truth Table Binary Relations |
dc.creator.none.fl_str_mv |
Elloumi, Samir Boulifa, Bilel Jaoua, Ali Saleh, Mohammad Al Otaibi, Jameela Frias, Marcelo Fabian |
author |
Elloumi, Samir |
author_facet |
Elloumi, Samir Boulifa, Bilel Jaoua, Ali Saleh, Mohammad Al Otaibi, Jameela Frias, Marcelo Fabian |
author_role |
author |
author2 |
Boulifa, Bilel Jaoua, Ali Saleh, Mohammad Al Otaibi, Jameela Frias, Marcelo Fabian |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Truth Table Binary Relation Cooperative Conceptual Reasoning Closure Operators Relation Combining Formal Concept Analysis Inference Engine |
topic |
Truth Table Binary Relation Cooperative Conceptual Reasoning Closure Operators Relation Combining Formal Concept Analysis Inference Engine |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We propose a conceptual reasoning method for an inference engine. Starting from a knowledge base made of decision rules, we first map each rule to its corresponding Truth Table Binary Relation (TTBR), considered as a formal context. Objects in the domain of TTBR correspond to all possible rule interpretations (in terms of their truth value assignments), and elements in the range of TTBR correspond to the attributes. By using the ‘natural join’ operator in the ‘ContextCombine’ Algorithm, we combine all truth tables into a global relation which has the advantage of containing the complete knowledge of all deducible rules. By conceptual reasoning using closure operators, from the initial rules we obtain all possible conclusions with respect to the global relation. We may then check if expected goals are among these possible conclusions. We also provide an approximate solution for the exponential growth of the global relation, by proposing modular and cooperative conceptual reasoning. We finally present experimental results for two case studies and discuss the effectiveness of our approach. Fil: Elloumi, Samir. Qatar University; Qatar Fil: Boulifa, Bilel. Qatar University; Qatar Fil: Jaoua, Ali. Qatar University; Qatar Fil: Saleh, Mohammad. Qatar University; Qatar Fil: Al Otaibi, Jameela. Qatar University; Qatar Fil: Frias, Marcelo Fabian. Instituto Tecnológico de Buenos Aires. Fac de Ingeniería. Departamento de Informatica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We propose a conceptual reasoning method for an inference engine. Starting from a knowledge base made of decision rules, we first map each rule to its corresponding Truth Table Binary Relation (TTBR), considered as a formal context. Objects in the domain of TTBR correspond to all possible rule interpretations (in terms of their truth value assignments), and elements in the range of TTBR correspond to the attributes. By using the ‘natural join’ operator in the ‘ContextCombine’ Algorithm, we combine all truth tables into a global relation which has the advantage of containing the complete knowledge of all deducible rules. By conceptual reasoning using closure operators, from the initial rules we obtain all possible conclusions with respect to the global relation. We may then check if expected goals are among these possible conclusions. We also provide an approximate solution for the exponential growth of the global relation, by proposing modular and cooperative conceptual reasoning. We finally present experimental results for two case studies and discuss the effectiveness of our approach. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/33304 Elloumi, Samir; Boulifa, Bilel; Jaoua, Ali; Saleh, Mohammad; Al Otaibi, Jameela; et al.; Inference engine based on closure and join operators over Truth Table Binary Relations; Elsevier; Journal Of Logic And Algebraic Programming; 83; 2; 2-2014; 180-193 1567-8326 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/33304 |
identifier_str_mv |
Elloumi, Samir; Boulifa, Bilel; Jaoua, Ali; Saleh, Mohammad; Al Otaibi, Jameela; et al.; Inference engine based on closure and join operators over Truth Table Binary Relations; Elsevier; Journal Of Logic And Algebraic Programming; 83; 2; 2-2014; 180-193 1567-8326 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1567832614000083 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jlap.2014.02.007 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614233039306752 |
score |
13.070432 |