Including poroelastic effects in the linear slip theory

Autores
Rubino, Jorge German; Castromán, Gabriel Alejandro; Müller, Tobias M.; Monachesi, Leonardo Bruno; Zyserman, Fabio Ivan; Holliger, Klaus
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Numerical simulations of seismic wave propagation in fractured media are often performed in the framework of the linear slip theory (LST). Therein, fractures are represented as interfaces and their mechanical properties are characterized through a compliance matrix. This theory has been extended to account for energy dissipation due to viscous friction within fluid-filled fractures by using complex-valued frequency-dependent compliances. This is, however, not fully adequate for fractured porous rocks in which wave-induced fluid flow (WIFF) between fractures and host rock constitutes a predominant seismic attenuation mechanism. In this letter, we develop an approach to incorporate WIFF effects directly into the LST for a 1D system via a complex-valued, frequency-dependent fracture compliance. The methodology is validated for a medium permeated by regularly distributed planar fractures, for which an analytical expression for the complex-valued normal compliance is determined in the framework of quasistatic poroelasticity. There is good agreement between synthetic seismograms generated using the proposed recipe and those obtained from comprehensive, but computationally demanding, poroelastic simulations.
Fil: Rubino, Jorge German. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universite de Lausanne; Suiza
Fil: Castromán, Gabriel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Fil: Müller, Tobias M.. Commonwealth Scientific and Industrial Research Organization; Australia
Fil: Monachesi, Leonardo Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Fil: Zyserman, Fabio Ivan. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Fil: Holliger, Klaus. Universite de Lausanne; Suiza
Materia
FRACTURES
ATTENUATION
MODELING
SEISMIC ATTRIBUTES
ROCK PHYSICS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/53573

id CONICETDig_2048df10adda7d47ed740440eea1fd93
oai_identifier_str oai:ri.conicet.gov.ar:11336/53573
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Including poroelastic effects in the linear slip theoryRubino, Jorge GermanCastromán, Gabriel AlejandroMüller, Tobias M.Monachesi, Leonardo BrunoZyserman, Fabio IvanHolliger, KlausFRACTURESATTENUATIONMODELINGSEISMIC ATTRIBUTESROCK PHYSICShttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Numerical simulations of seismic wave propagation in fractured media are often performed in the framework of the linear slip theory (LST). Therein, fractures are represented as interfaces and their mechanical properties are characterized through a compliance matrix. This theory has been extended to account for energy dissipation due to viscous friction within fluid-filled fractures by using complex-valued frequency-dependent compliances. This is, however, not fully adequate for fractured porous rocks in which wave-induced fluid flow (WIFF) between fractures and host rock constitutes a predominant seismic attenuation mechanism. In this letter, we develop an approach to incorporate WIFF effects directly into the LST for a 1D system via a complex-valued, frequency-dependent fracture compliance. The methodology is validated for a medium permeated by regularly distributed planar fractures, for which an analytical expression for the complex-valued normal compliance is determined in the framework of quasistatic poroelasticity. There is good agreement between synthetic seismograms generated using the proposed recipe and those obtained from comprehensive, but computationally demanding, poroelastic simulations.Fil: Rubino, Jorge German. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universite de Lausanne; SuizaFil: Castromán, Gabriel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaFil: Müller, Tobias M.. Commonwealth Scientific and Industrial Research Organization; AustraliaFil: Monachesi, Leonardo Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaFil: Zyserman, Fabio Ivan. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaFil: Holliger, Klaus. Universite de Lausanne; SuizaSociety of Exploration Geophysicists2015-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/53573Rubino, Jorge German; Castromán, Gabriel Alejandro; Müller, Tobias M.; Monachesi, Leonardo Bruno; Zyserman, Fabio Ivan; et al.; Including poroelastic effects in the linear slip theory; Society of Exploration Geophysicists; Geophysics; 80; 2; 3-2015; A51-A560016-8033CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1190/geo2014-0409.1info:eu-repo/semantics/altIdentifier/url/https://library.seg.org/doi/10.1190/geo2014-0409.1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:57:28Zoai:ri.conicet.gov.ar:11336/53573instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:57:29.186CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Including poroelastic effects in the linear slip theory
title Including poroelastic effects in the linear slip theory
spellingShingle Including poroelastic effects in the linear slip theory
Rubino, Jorge German
FRACTURES
ATTENUATION
MODELING
SEISMIC ATTRIBUTES
ROCK PHYSICS
title_short Including poroelastic effects in the linear slip theory
title_full Including poroelastic effects in the linear slip theory
title_fullStr Including poroelastic effects in the linear slip theory
title_full_unstemmed Including poroelastic effects in the linear slip theory
title_sort Including poroelastic effects in the linear slip theory
dc.creator.none.fl_str_mv Rubino, Jorge German
Castromán, Gabriel Alejandro
Müller, Tobias M.
Monachesi, Leonardo Bruno
Zyserman, Fabio Ivan
Holliger, Klaus
author Rubino, Jorge German
author_facet Rubino, Jorge German
Castromán, Gabriel Alejandro
Müller, Tobias M.
Monachesi, Leonardo Bruno
Zyserman, Fabio Ivan
Holliger, Klaus
author_role author
author2 Castromán, Gabriel Alejandro
Müller, Tobias M.
Monachesi, Leonardo Bruno
Zyserman, Fabio Ivan
Holliger, Klaus
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv FRACTURES
ATTENUATION
MODELING
SEISMIC ATTRIBUTES
ROCK PHYSICS
topic FRACTURES
ATTENUATION
MODELING
SEISMIC ATTRIBUTES
ROCK PHYSICS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Numerical simulations of seismic wave propagation in fractured media are often performed in the framework of the linear slip theory (LST). Therein, fractures are represented as interfaces and their mechanical properties are characterized through a compliance matrix. This theory has been extended to account for energy dissipation due to viscous friction within fluid-filled fractures by using complex-valued frequency-dependent compliances. This is, however, not fully adequate for fractured porous rocks in which wave-induced fluid flow (WIFF) between fractures and host rock constitutes a predominant seismic attenuation mechanism. In this letter, we develop an approach to incorporate WIFF effects directly into the LST for a 1D system via a complex-valued, frequency-dependent fracture compliance. The methodology is validated for a medium permeated by regularly distributed planar fractures, for which an analytical expression for the complex-valued normal compliance is determined in the framework of quasistatic poroelasticity. There is good agreement between synthetic seismograms generated using the proposed recipe and those obtained from comprehensive, but computationally demanding, poroelastic simulations.
Fil: Rubino, Jorge German. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universite de Lausanne; Suiza
Fil: Castromán, Gabriel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Fil: Müller, Tobias M.. Commonwealth Scientific and Industrial Research Organization; Australia
Fil: Monachesi, Leonardo Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Fil: Zyserman, Fabio Ivan. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Fil: Holliger, Klaus. Universite de Lausanne; Suiza
description Numerical simulations of seismic wave propagation in fractured media are often performed in the framework of the linear slip theory (LST). Therein, fractures are represented as interfaces and their mechanical properties are characterized through a compliance matrix. This theory has been extended to account for energy dissipation due to viscous friction within fluid-filled fractures by using complex-valued frequency-dependent compliances. This is, however, not fully adequate for fractured porous rocks in which wave-induced fluid flow (WIFF) between fractures and host rock constitutes a predominant seismic attenuation mechanism. In this letter, we develop an approach to incorporate WIFF effects directly into the LST for a 1D system via a complex-valued, frequency-dependent fracture compliance. The methodology is validated for a medium permeated by regularly distributed planar fractures, for which an analytical expression for the complex-valued normal compliance is determined in the framework of quasistatic poroelasticity. There is good agreement between synthetic seismograms generated using the proposed recipe and those obtained from comprehensive, but computationally demanding, poroelastic simulations.
publishDate 2015
dc.date.none.fl_str_mv 2015-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/53573
Rubino, Jorge German; Castromán, Gabriel Alejandro; Müller, Tobias M.; Monachesi, Leonardo Bruno; Zyserman, Fabio Ivan; et al.; Including poroelastic effects in the linear slip theory; Society of Exploration Geophysicists; Geophysics; 80; 2; 3-2015; A51-A56
0016-8033
CONICET Digital
CONICET
url http://hdl.handle.net/11336/53573
identifier_str_mv Rubino, Jorge German; Castromán, Gabriel Alejandro; Müller, Tobias M.; Monachesi, Leonardo Bruno; Zyserman, Fabio Ivan; et al.; Including poroelastic effects in the linear slip theory; Society of Exploration Geophysicists; Geophysics; 80; 2; 3-2015; A51-A56
0016-8033
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1190/geo2014-0409.1
info:eu-repo/semantics/altIdentifier/url/https://library.seg.org/doi/10.1190/geo2014-0409.1
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Society of Exploration Geophysicists
publisher.none.fl_str_mv Society of Exploration Geophysicists
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782285655834624
score 12.982451