Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1 A903V and CESA3 T942I of cellulose synthase
- Autores
- Harris, Darby M.; Corbin, Kendall; Wang, Tuo; Gutierrez, Ryan; Bertolo, Ana L.; Petti, Carloalberto; Smilgies, Detlef M.; Estevez, Jose Manuel; Bonetta, Dario; Urbanowicz, Breeanna R.; Ehrhardt, David W.; Somerville, Chris R.; Rose, Jocelyn K. C.; Hong, Mei; DeBolt, Seth
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The mechanisms underlying the biosynthesis of cellulose in plants are complex and still poorly understood. A central question concerns the mechanism of microfibril structure and how this is linked to the catalytic polymerization action of cellulose synthase (CESA). Furthermore, it remains unclear whether modification of cellulose microfibril structure can be achieved genetically, which could be transformative in a bio-based economy. To explore these processes in planta, we developed a chemical genetic toolbox of pharmacological inhibitors and corresponding resistance-conferring point mutations in the C-terminal transmembrane domain region of CESA1 A903V and CESA3 T942I in Arabidopsis thaliana. Using 13C solidstate nuclear magnetic resonance spectroscopy and X-ray diffraction, we show that the cellulose microfibrils displayed reduced width and an additional cellulose C4 peak indicative of a degree of crystallinity that is intermediate between the surface and interior glucans of wild type, suggesting a difference in glucan chain association during microfibril formation. Consistent with measurements of lower microfibril crystallinity, cellulose extracts from mutated CESA1 A903V and CESA3 T942I displayed greater saccharification efficiency than wild type. Using live-cell imaging to track fluorescently labeled CESA, we found that these mutants show increased CESA velocities in the plasma membrane, an indication of increased polymerization rate. Collectively, these data suggest that CESA1 A903Vand CESA3 T942I have modified microfibril structure in terms of crystallinity and suggest that in plants, as in bacteria, crystallization biophysically limits polymerization.
Fil: Harris, Darby M.. University of Kentucky; Estados Unidos
Fil: Corbin, Kendall. University of Kentucky; Estados Unidos
Fil: Wang, Tuo. University of Iowa; Estados Unidos
Fil: Gutierrez, Ryan. Carnegie Institution for Science; Estados Unidos
Fil: Bertolo, Ana L.. Cornell University; Estados Unidos
Fil: Petti, Carloalberto. University of Kentucky; Estados Unidos
Fil: Smilgies, Detlef M.. Cornell University; Estados Unidos
Fil: Estevez, Jose Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina
Fil: Bonetta, Dario. University Of Ontario Institute Of Technology; Canadá
Fil: Urbanowicz, Breeanna R.. Cornell University; Estados Unidos. University of Georgia; Estados Unidos
Fil: Ehrhardt, David W.. Carnegie Institution for Science; Estados Unidos
Fil: Somerville, Chris R.. University of California at Berkeley; Estados Unidos
Fil: Rose, Jocelyn K. C.. Cornell University; Estados Unidos
Fil: Hong, Mei. University of Iowa; Estados Unidos
Fil: DeBolt, Seth. University of Kentucky; Estados Unidos - Materia
-
Cell Wall
Polysaccharide
Quinoxyphen - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/70115
Ver los metadatos del registro completo
id |
CONICETDig_1fc63a85ef1041fca5660060d107218f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/70115 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1 A903V and CESA3 T942I of cellulose synthaseHarris, Darby M.Corbin, KendallWang, TuoGutierrez, RyanBertolo, Ana L.Petti, CarloalbertoSmilgies, Detlef M.Estevez, Jose ManuelBonetta, DarioUrbanowicz, Breeanna R.Ehrhardt, David W.Somerville, Chris R.Rose, Jocelyn K. C.Hong, MeiDeBolt, SethCell WallPolysaccharideQuinoxyphenhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The mechanisms underlying the biosynthesis of cellulose in plants are complex and still poorly understood. A central question concerns the mechanism of microfibril structure and how this is linked to the catalytic polymerization action of cellulose synthase (CESA). Furthermore, it remains unclear whether modification of cellulose microfibril structure can be achieved genetically, which could be transformative in a bio-based economy. To explore these processes in planta, we developed a chemical genetic toolbox of pharmacological inhibitors and corresponding resistance-conferring point mutations in the C-terminal transmembrane domain region of CESA1 A903V and CESA3 T942I in Arabidopsis thaliana. Using 13C solidstate nuclear magnetic resonance spectroscopy and X-ray diffraction, we show that the cellulose microfibrils displayed reduced width and an additional cellulose C4 peak indicative of a degree of crystallinity that is intermediate between the surface and interior glucans of wild type, suggesting a difference in glucan chain association during microfibril formation. Consistent with measurements of lower microfibril crystallinity, cellulose extracts from mutated CESA1 A903V and CESA3 T942I displayed greater saccharification efficiency than wild type. Using live-cell imaging to track fluorescently labeled CESA, we found that these mutants show increased CESA velocities in the plasma membrane, an indication of increased polymerization rate. Collectively, these data suggest that CESA1 A903Vand CESA3 T942I have modified microfibril structure in terms of crystallinity and suggest that in plants, as in bacteria, crystallization biophysically limits polymerization.Fil: Harris, Darby M.. University of Kentucky; Estados UnidosFil: Corbin, Kendall. University of Kentucky; Estados UnidosFil: Wang, Tuo. University of Iowa; Estados UnidosFil: Gutierrez, Ryan. Carnegie Institution for Science; Estados UnidosFil: Bertolo, Ana L.. Cornell University; Estados UnidosFil: Petti, Carloalberto. University of Kentucky; Estados UnidosFil: Smilgies, Detlef M.. Cornell University; Estados UnidosFil: Estevez, Jose Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Bonetta, Dario. University Of Ontario Institute Of Technology; CanadáFil: Urbanowicz, Breeanna R.. Cornell University; Estados Unidos. University of Georgia; Estados UnidosFil: Ehrhardt, David W.. Carnegie Institution for Science; Estados UnidosFil: Somerville, Chris R.. University of California at Berkeley; Estados UnidosFil: Rose, Jocelyn K. C.. Cornell University; Estados UnidosFil: Hong, Mei. University of Iowa; Estados UnidosFil: DeBolt, Seth. University of Kentucky; Estados UnidosNational Academy of Sciences2012-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/70115Harris, Darby M.; Corbin, Kendall; Wang, Tuo; Gutierrez, Ryan; Bertolo, Ana L.; et al.; Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1 A903V and CESA3 T942I of cellulose synthase; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 109; 11; 3-2012; 4098-41030027-84241091-6490CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1073/pnas.1200352109info:eu-repo/semantics/altIdentifier/url/https://www.pnas.org/content/109/11/4098info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:00:08Zoai:ri.conicet.gov.ar:11336/70115instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:00:08.295CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1 A903V and CESA3 T942I of cellulose synthase |
title |
Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1 A903V and CESA3 T942I of cellulose synthase |
spellingShingle |
Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1 A903V and CESA3 T942I of cellulose synthase Harris, Darby M. Cell Wall Polysaccharide Quinoxyphen |
title_short |
Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1 A903V and CESA3 T942I of cellulose synthase |
title_full |
Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1 A903V and CESA3 T942I of cellulose synthase |
title_fullStr |
Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1 A903V and CESA3 T942I of cellulose synthase |
title_full_unstemmed |
Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1 A903V and CESA3 T942I of cellulose synthase |
title_sort |
Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1 A903V and CESA3 T942I of cellulose synthase |
dc.creator.none.fl_str_mv |
Harris, Darby M. Corbin, Kendall Wang, Tuo Gutierrez, Ryan Bertolo, Ana L. Petti, Carloalberto Smilgies, Detlef M. Estevez, Jose Manuel Bonetta, Dario Urbanowicz, Breeanna R. Ehrhardt, David W. Somerville, Chris R. Rose, Jocelyn K. C. Hong, Mei DeBolt, Seth |
author |
Harris, Darby M. |
author_facet |
Harris, Darby M. Corbin, Kendall Wang, Tuo Gutierrez, Ryan Bertolo, Ana L. Petti, Carloalberto Smilgies, Detlef M. Estevez, Jose Manuel Bonetta, Dario Urbanowicz, Breeanna R. Ehrhardt, David W. Somerville, Chris R. Rose, Jocelyn K. C. Hong, Mei DeBolt, Seth |
author_role |
author |
author2 |
Corbin, Kendall Wang, Tuo Gutierrez, Ryan Bertolo, Ana L. Petti, Carloalberto Smilgies, Detlef M. Estevez, Jose Manuel Bonetta, Dario Urbanowicz, Breeanna R. Ehrhardt, David W. Somerville, Chris R. Rose, Jocelyn K. C. Hong, Mei DeBolt, Seth |
author2_role |
author author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Cell Wall Polysaccharide Quinoxyphen |
topic |
Cell Wall Polysaccharide Quinoxyphen |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The mechanisms underlying the biosynthesis of cellulose in plants are complex and still poorly understood. A central question concerns the mechanism of microfibril structure and how this is linked to the catalytic polymerization action of cellulose synthase (CESA). Furthermore, it remains unclear whether modification of cellulose microfibril structure can be achieved genetically, which could be transformative in a bio-based economy. To explore these processes in planta, we developed a chemical genetic toolbox of pharmacological inhibitors and corresponding resistance-conferring point mutations in the C-terminal transmembrane domain region of CESA1 A903V and CESA3 T942I in Arabidopsis thaliana. Using 13C solidstate nuclear magnetic resonance spectroscopy and X-ray diffraction, we show that the cellulose microfibrils displayed reduced width and an additional cellulose C4 peak indicative of a degree of crystallinity that is intermediate between the surface and interior glucans of wild type, suggesting a difference in glucan chain association during microfibril formation. Consistent with measurements of lower microfibril crystallinity, cellulose extracts from mutated CESA1 A903V and CESA3 T942I displayed greater saccharification efficiency than wild type. Using live-cell imaging to track fluorescently labeled CESA, we found that these mutants show increased CESA velocities in the plasma membrane, an indication of increased polymerization rate. Collectively, these data suggest that CESA1 A903Vand CESA3 T942I have modified microfibril structure in terms of crystallinity and suggest that in plants, as in bacteria, crystallization biophysically limits polymerization. Fil: Harris, Darby M.. University of Kentucky; Estados Unidos Fil: Corbin, Kendall. University of Kentucky; Estados Unidos Fil: Wang, Tuo. University of Iowa; Estados Unidos Fil: Gutierrez, Ryan. Carnegie Institution for Science; Estados Unidos Fil: Bertolo, Ana L.. Cornell University; Estados Unidos Fil: Petti, Carloalberto. University of Kentucky; Estados Unidos Fil: Smilgies, Detlef M.. Cornell University; Estados Unidos Fil: Estevez, Jose Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina Fil: Bonetta, Dario. University Of Ontario Institute Of Technology; Canadá Fil: Urbanowicz, Breeanna R.. Cornell University; Estados Unidos. University of Georgia; Estados Unidos Fil: Ehrhardt, David W.. Carnegie Institution for Science; Estados Unidos Fil: Somerville, Chris R.. University of California at Berkeley; Estados Unidos Fil: Rose, Jocelyn K. C.. Cornell University; Estados Unidos Fil: Hong, Mei. University of Iowa; Estados Unidos Fil: DeBolt, Seth. University of Kentucky; Estados Unidos |
description |
The mechanisms underlying the biosynthesis of cellulose in plants are complex and still poorly understood. A central question concerns the mechanism of microfibril structure and how this is linked to the catalytic polymerization action of cellulose synthase (CESA). Furthermore, it remains unclear whether modification of cellulose microfibril structure can be achieved genetically, which could be transformative in a bio-based economy. To explore these processes in planta, we developed a chemical genetic toolbox of pharmacological inhibitors and corresponding resistance-conferring point mutations in the C-terminal transmembrane domain region of CESA1 A903V and CESA3 T942I in Arabidopsis thaliana. Using 13C solidstate nuclear magnetic resonance spectroscopy and X-ray diffraction, we show that the cellulose microfibrils displayed reduced width and an additional cellulose C4 peak indicative of a degree of crystallinity that is intermediate between the surface and interior glucans of wild type, suggesting a difference in glucan chain association during microfibril formation. Consistent with measurements of lower microfibril crystallinity, cellulose extracts from mutated CESA1 A903V and CESA3 T942I displayed greater saccharification efficiency than wild type. Using live-cell imaging to track fluorescently labeled CESA, we found that these mutants show increased CESA velocities in the plasma membrane, an indication of increased polymerization rate. Collectively, these data suggest that CESA1 A903Vand CESA3 T942I have modified microfibril structure in terms of crystallinity and suggest that in plants, as in bacteria, crystallization biophysically limits polymerization. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/70115 Harris, Darby M.; Corbin, Kendall; Wang, Tuo; Gutierrez, Ryan; Bertolo, Ana L.; et al.; Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1 A903V and CESA3 T942I of cellulose synthase; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 109; 11; 3-2012; 4098-4103 0027-8424 1091-6490 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/70115 |
identifier_str_mv |
Harris, Darby M.; Corbin, Kendall; Wang, Tuo; Gutierrez, Ryan; Bertolo, Ana L.; et al.; Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1 A903V and CESA3 T942I of cellulose synthase; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 109; 11; 3-2012; 4098-4103 0027-8424 1091-6490 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1073/pnas.1200352109 info:eu-repo/semantics/altIdentifier/url/https://www.pnas.org/content/109/11/4098 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
National Academy of Sciences |
publisher.none.fl_str_mv |
National Academy of Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613779231342592 |
score |
13.070432 |