Multi-Temporal Remote Sensing for Forest Conservation and Management: A Case Study of the Gran Chaco in Central Argentina
- Autores
- Alaggia, Francisco Guillermo; Innangi, Michele; Cavallero, Laura; López, Dardo Rubén; Pontieri, Federica; Marzialetti, Flavio; Riera Tatché, Ramon; Gamba, Paolo; Carranza, Maria Laura
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Anthropogenic alteration of tropical and subtropical forests is a major driver of biodi-versity loss, with the Chaco forest, the largest dry forest in the Americas, among the most impacted regions. Sustainable forest management, a key objective of the UN´s 15th Sustainable Development Goal (SDG), underscores the need for advanced moni-toring tools. This study integrates Sentinel-2 remote sensing (RS) spectral indices with field data to analyze forests under varying management regimes and levels of altera-tion in a representative area of the Chaco region (Chancaní Provincial Reserve and surrounding areas of the West Arid Chaco). Forest structure types and conservation levels were linked to monthly spectral index behavior using Linear Mixed Models and Random Forest analysis. Spectral indices such as BI (Brightness Index), NDWI (Normalized Difference Water Index), and MCARI (Modified Chlorophyll Absorption in Reflectance Index) effectively differentiated forest stands by conservation status and structural alteration. This combined RS and field data approach proved highly effective for detecting and characterizing forests with diverse conservation and sustainability conditions. The methodology demonstrates significant potential as a reliable RS-based tool for monitoring forest health and supporting progress toward SDG targets, particularly in regions like the Chaco forest, which faces extensive anthropogenic pressures.
Fil: Alaggia, Francisco Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Córdoba. Estación Experimental Agropecuaria Manfredi. Estación Forestal Villa Dolores; Argentina
Fil: Innangi, Michele. Università degli Studi del Molise; Italia
Fil: Cavallero, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Córdoba. Estación Experimental Agropecuaria Manfredi. Estación Forestal Villa Dolores; Argentina
Fil: López, Dardo Rubén. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Córdoba. Estación Experimental Agropecuaria Manfredi. Estación Forestal Villa Dolores; Argentina
Fil: Pontieri, Federica. Università degli Studi del Molise; Italia
Fil: Marzialetti, Flavio. National Biodiversity Future Center; Italia. University of Sassari; Italia
Fil: Riera Tatché, Ramon. Università degli Studi del Molise; Italia. Universita degli Studi di Pavia; Italia
Fil: Gamba, Paolo. Universita degli Studi di Pavia; Italia
Fil: Carranza, Maria Laura. Università degli Studi del Molise; Italia. Universita Degli Studi Di Pavia; Italia - Materia
-
ECOSYSTEM MONITORING
STRUCTURAL ALTERATION INDEX
INDEXES PHENOLOGY
RANDOM FOREST - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/272038
Ver los metadatos del registro completo
id |
CONICETDig_1f76b0a1f2ec2aaa24ab5bcc75848ab7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/272038 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Multi-Temporal Remote Sensing for Forest Conservation and Management: A Case Study of the Gran Chaco in Central ArgentinaAlaggia, Francisco GuillermoInnangi, MicheleCavallero, LauraLópez, Dardo RubénPontieri, FedericaMarzialetti, FlavioRiera Tatché, RamonGamba, PaoloCarranza, Maria LauraECOSYSTEM MONITORINGSTRUCTURAL ALTERATION INDEXINDEXES PHENOLOGYRANDOM FORESThttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Anthropogenic alteration of tropical and subtropical forests is a major driver of biodi-versity loss, with the Chaco forest, the largest dry forest in the Americas, among the most impacted regions. Sustainable forest management, a key objective of the UN´s 15th Sustainable Development Goal (SDG), underscores the need for advanced moni-toring tools. This study integrates Sentinel-2 remote sensing (RS) spectral indices with field data to analyze forests under varying management regimes and levels of altera-tion in a representative area of the Chaco region (Chancaní Provincial Reserve and surrounding areas of the West Arid Chaco). Forest structure types and conservation levels were linked to monthly spectral index behavior using Linear Mixed Models and Random Forest analysis. Spectral indices such as BI (Brightness Index), NDWI (Normalized Difference Water Index), and MCARI (Modified Chlorophyll Absorption in Reflectance Index) effectively differentiated forest stands by conservation status and structural alteration. This combined RS and field data approach proved highly effective for detecting and characterizing forests with diverse conservation and sustainability conditions. The methodology demonstrates significant potential as a reliable RS-based tool for monitoring forest health and supporting progress toward SDG targets, particularly in regions like the Chaco forest, which faces extensive anthropogenic pressures.Fil: Alaggia, Francisco Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Córdoba. Estación Experimental Agropecuaria Manfredi. Estación Forestal Villa Dolores; ArgentinaFil: Innangi, Michele. Università degli Studi del Molise; ItaliaFil: Cavallero, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Córdoba. Estación Experimental Agropecuaria Manfredi. Estación Forestal Villa Dolores; ArgentinaFil: López, Dardo Rubén. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Córdoba. Estación Experimental Agropecuaria Manfredi. Estación Forestal Villa Dolores; ArgentinaFil: Pontieri, Federica. Università degli Studi del Molise; ItaliaFil: Marzialetti, Flavio. National Biodiversity Future Center; Italia. University of Sassari; ItaliaFil: Riera Tatché, Ramon. Università degli Studi del Molise; Italia. Universita degli Studi di Pavia; ItaliaFil: Gamba, Paolo. Universita degli Studi di Pavia; ItaliaFil: Carranza, Maria Laura. Università degli Studi del Molise; Italia. Universita Degli Studi Di Pavia; ItaliaMultidisciplinary Digital Publishing Institute2025-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/272038Alaggia, Francisco Guillermo; Innangi, Michele; Cavallero, Laura; López, Dardo Rubén; Pontieri, Federica; et al.; Multi-Temporal Remote Sensing for Forest Conservation and Management: A Case Study of the Gran Chaco in Central Argentina; Multidisciplinary Digital Publishing Institute; Remote Sensing; 17; 5; 3-2025; 1-262072-4292CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2072-4292/17/5/748info:eu-repo/semantics/altIdentifier/doi/10.3390/rs17050748info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:32:40Zoai:ri.conicet.gov.ar:11336/272038instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:32:40.902CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Multi-Temporal Remote Sensing for Forest Conservation and Management: A Case Study of the Gran Chaco in Central Argentina |
title |
Multi-Temporal Remote Sensing for Forest Conservation and Management: A Case Study of the Gran Chaco in Central Argentina |
spellingShingle |
Multi-Temporal Remote Sensing for Forest Conservation and Management: A Case Study of the Gran Chaco in Central Argentina Alaggia, Francisco Guillermo ECOSYSTEM MONITORING STRUCTURAL ALTERATION INDEX INDEXES PHENOLOGY RANDOM FOREST |
title_short |
Multi-Temporal Remote Sensing for Forest Conservation and Management: A Case Study of the Gran Chaco in Central Argentina |
title_full |
Multi-Temporal Remote Sensing for Forest Conservation and Management: A Case Study of the Gran Chaco in Central Argentina |
title_fullStr |
Multi-Temporal Remote Sensing for Forest Conservation and Management: A Case Study of the Gran Chaco in Central Argentina |
title_full_unstemmed |
Multi-Temporal Remote Sensing for Forest Conservation and Management: A Case Study of the Gran Chaco in Central Argentina |
title_sort |
Multi-Temporal Remote Sensing for Forest Conservation and Management: A Case Study of the Gran Chaco in Central Argentina |
dc.creator.none.fl_str_mv |
Alaggia, Francisco Guillermo Innangi, Michele Cavallero, Laura López, Dardo Rubén Pontieri, Federica Marzialetti, Flavio Riera Tatché, Ramon Gamba, Paolo Carranza, Maria Laura |
author |
Alaggia, Francisco Guillermo |
author_facet |
Alaggia, Francisco Guillermo Innangi, Michele Cavallero, Laura López, Dardo Rubén Pontieri, Federica Marzialetti, Flavio Riera Tatché, Ramon Gamba, Paolo Carranza, Maria Laura |
author_role |
author |
author2 |
Innangi, Michele Cavallero, Laura López, Dardo Rubén Pontieri, Federica Marzialetti, Flavio Riera Tatché, Ramon Gamba, Paolo Carranza, Maria Laura |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
ECOSYSTEM MONITORING STRUCTURAL ALTERATION INDEX INDEXES PHENOLOGY RANDOM FOREST |
topic |
ECOSYSTEM MONITORING STRUCTURAL ALTERATION INDEX INDEXES PHENOLOGY RANDOM FOREST |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Anthropogenic alteration of tropical and subtropical forests is a major driver of biodi-versity loss, with the Chaco forest, the largest dry forest in the Americas, among the most impacted regions. Sustainable forest management, a key objective of the UN´s 15th Sustainable Development Goal (SDG), underscores the need for advanced moni-toring tools. This study integrates Sentinel-2 remote sensing (RS) spectral indices with field data to analyze forests under varying management regimes and levels of altera-tion in a representative area of the Chaco region (Chancaní Provincial Reserve and surrounding areas of the West Arid Chaco). Forest structure types and conservation levels were linked to monthly spectral index behavior using Linear Mixed Models and Random Forest analysis. Spectral indices such as BI (Brightness Index), NDWI (Normalized Difference Water Index), and MCARI (Modified Chlorophyll Absorption in Reflectance Index) effectively differentiated forest stands by conservation status and structural alteration. This combined RS and field data approach proved highly effective for detecting and characterizing forests with diverse conservation and sustainability conditions. The methodology demonstrates significant potential as a reliable RS-based tool for monitoring forest health and supporting progress toward SDG targets, particularly in regions like the Chaco forest, which faces extensive anthropogenic pressures. Fil: Alaggia, Francisco Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Córdoba. Estación Experimental Agropecuaria Manfredi. Estación Forestal Villa Dolores; Argentina Fil: Innangi, Michele. Università degli Studi del Molise; Italia Fil: Cavallero, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Córdoba. Estación Experimental Agropecuaria Manfredi. Estación Forestal Villa Dolores; Argentina Fil: López, Dardo Rubén. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Córdoba. Estación Experimental Agropecuaria Manfredi. Estación Forestal Villa Dolores; Argentina Fil: Pontieri, Federica. Università degli Studi del Molise; Italia Fil: Marzialetti, Flavio. National Biodiversity Future Center; Italia. University of Sassari; Italia Fil: Riera Tatché, Ramon. Università degli Studi del Molise; Italia. Universita degli Studi di Pavia; Italia Fil: Gamba, Paolo. Universita degli Studi di Pavia; Italia Fil: Carranza, Maria Laura. Università degli Studi del Molise; Italia. Universita Degli Studi Di Pavia; Italia |
description |
Anthropogenic alteration of tropical and subtropical forests is a major driver of biodi-versity loss, with the Chaco forest, the largest dry forest in the Americas, among the most impacted regions. Sustainable forest management, a key objective of the UN´s 15th Sustainable Development Goal (SDG), underscores the need for advanced moni-toring tools. This study integrates Sentinel-2 remote sensing (RS) spectral indices with field data to analyze forests under varying management regimes and levels of altera-tion in a representative area of the Chaco region (Chancaní Provincial Reserve and surrounding areas of the West Arid Chaco). Forest structure types and conservation levels were linked to monthly spectral index behavior using Linear Mixed Models and Random Forest analysis. Spectral indices such as BI (Brightness Index), NDWI (Normalized Difference Water Index), and MCARI (Modified Chlorophyll Absorption in Reflectance Index) effectively differentiated forest stands by conservation status and structural alteration. This combined RS and field data approach proved highly effective for detecting and characterizing forests with diverse conservation and sustainability conditions. The methodology demonstrates significant potential as a reliable RS-based tool for monitoring forest health and supporting progress toward SDG targets, particularly in regions like the Chaco forest, which faces extensive anthropogenic pressures. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/272038 Alaggia, Francisco Guillermo; Innangi, Michele; Cavallero, Laura; López, Dardo Rubén; Pontieri, Federica; et al.; Multi-Temporal Remote Sensing for Forest Conservation and Management: A Case Study of the Gran Chaco in Central Argentina; Multidisciplinary Digital Publishing Institute; Remote Sensing; 17; 5; 3-2025; 1-26 2072-4292 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/272038 |
identifier_str_mv |
Alaggia, Francisco Guillermo; Innangi, Michele; Cavallero, Laura; López, Dardo Rubén; Pontieri, Federica; et al.; Multi-Temporal Remote Sensing for Forest Conservation and Management: A Case Study of the Gran Chaco in Central Argentina; Multidisciplinary Digital Publishing Institute; Remote Sensing; 17; 5; 3-2025; 1-26 2072-4292 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2072-4292/17/5/748 info:eu-repo/semantics/altIdentifier/doi/10.3390/rs17050748 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844612998407127040 |
score |
13.070432 |