Weight distribution of cyclic codes defined by quadratic forms and related curves
- Autores
- Podesta, Ricardo Alberto; Videla Guzman, Denis Eduardo
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider cyclic codes CL associated to quadratic trace forms inm variables (Formula Presented) determined by a family L of q-linearized polynomials R over Fqm, and three related codes CL,0, CL,1, and CL,2. We describe the spectra for all these codes when L is an even rank family, in terms of the distribution of ranks of the forms QR in the family L, and we also computethe complete weight enumerator for CL. In particular, considering the family L = ‹xql›, with l fixed in N, we give the weight distribution of four parametrized families of cyclic codes Cl, Cl,0,Cl,1, and Cl,2 over Fq with zeros(Formula Presented) respectively,where q = ps with p prime, α is a generator of F*qm, and m/(m,l)is even. Finally, we give simple necessary and sufficient conditions for Artin–Schreier curves yp−y = xR(x)+βx, p prime, associated to polynomials R ∈ L to be optimal. We then obtain several maximal and minimal such curves inthe case (Formula Presented).
Fil: Podesta, Ricardo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Videla Guzman, Denis Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina - Materia
-
CYCLIC CODES
OPTIMAL CURVES
QUADRATIC FORMS
WEIGHT DISTRIBUTION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/172738
Ver los metadatos del registro completo
id |
CONICETDig_1f43f7d5f39d5fdbed6c6094c77a228a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/172738 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Weight distribution of cyclic codes defined by quadratic forms and related curvesPodesta, Ricardo AlbertoVidela Guzman, Denis EduardoCYCLIC CODESOPTIMAL CURVESQUADRATIC FORMSWEIGHT DISTRIBUTIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider cyclic codes CL associated to quadratic trace forms inm variables (Formula Presented) determined by a family L of q-linearized polynomials R over Fqm, and three related codes CL,0, CL,1, and CL,2. We describe the spectra for all these codes when L is an even rank family, in terms of the distribution of ranks of the forms QR in the family L, and we also computethe complete weight enumerator for CL. In particular, considering the family L = ‹xql›, with l fixed in N, we give the weight distribution of four parametrized families of cyclic codes Cl, Cl,0,Cl,1, and Cl,2 over Fq with zeros(Formula Presented) respectively,where q = ps with p prime, α is a generator of F*qm, and m/(m,l)is even. Finally, we give simple necessary and sufficient conditions for Artin–Schreier curves yp−y = xR(x)+βx, p prime, associated to polynomials R ∈ L to be optimal. We then obtain several maximal and minimal such curves inthe case (Formula Presented).Fil: Podesta, Ricardo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Videla Guzman, Denis Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaUnión Matemática Argentina2021-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/172738Podesta, Ricardo Alberto; Videla Guzman, Denis Eduardo; Weight distribution of cyclic codes defined by quadratic forms and related curves; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 62; 1; 6-2021; 219-2420041-69321669-9637CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://inmabb.criba.edu.ar/revuma/revuma.php?p=doi/v62n1a15info:eu-repo/semantics/altIdentifier/doi/10.33044/revuma.1840info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:43:52Zoai:ri.conicet.gov.ar:11336/172738instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:43:53.126CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Weight distribution of cyclic codes defined by quadratic forms and related curves |
title |
Weight distribution of cyclic codes defined by quadratic forms and related curves |
spellingShingle |
Weight distribution of cyclic codes defined by quadratic forms and related curves Podesta, Ricardo Alberto CYCLIC CODES OPTIMAL CURVES QUADRATIC FORMS WEIGHT DISTRIBUTION |
title_short |
Weight distribution of cyclic codes defined by quadratic forms and related curves |
title_full |
Weight distribution of cyclic codes defined by quadratic forms and related curves |
title_fullStr |
Weight distribution of cyclic codes defined by quadratic forms and related curves |
title_full_unstemmed |
Weight distribution of cyclic codes defined by quadratic forms and related curves |
title_sort |
Weight distribution of cyclic codes defined by quadratic forms and related curves |
dc.creator.none.fl_str_mv |
Podesta, Ricardo Alberto Videla Guzman, Denis Eduardo |
author |
Podesta, Ricardo Alberto |
author_facet |
Podesta, Ricardo Alberto Videla Guzman, Denis Eduardo |
author_role |
author |
author2 |
Videla Guzman, Denis Eduardo |
author2_role |
author |
dc.subject.none.fl_str_mv |
CYCLIC CODES OPTIMAL CURVES QUADRATIC FORMS WEIGHT DISTRIBUTION |
topic |
CYCLIC CODES OPTIMAL CURVES QUADRATIC FORMS WEIGHT DISTRIBUTION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We consider cyclic codes CL associated to quadratic trace forms inm variables (Formula Presented) determined by a family L of q-linearized polynomials R over Fqm, and three related codes CL,0, CL,1, and CL,2. We describe the spectra for all these codes when L is an even rank family, in terms of the distribution of ranks of the forms QR in the family L, and we also computethe complete weight enumerator for CL. In particular, considering the family L = ‹xql›, with l fixed in N, we give the weight distribution of four parametrized families of cyclic codes Cl, Cl,0,Cl,1, and Cl,2 over Fq with zeros(Formula Presented) respectively,where q = ps with p prime, α is a generator of F*qm, and m/(m,l)is even. Finally, we give simple necessary and sufficient conditions for Artin–Schreier curves yp−y = xR(x)+βx, p prime, associated to polynomials R ∈ L to be optimal. We then obtain several maximal and minimal such curves inthe case (Formula Presented). Fil: Podesta, Ricardo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina Fil: Videla Guzman, Denis Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina |
description |
We consider cyclic codes CL associated to quadratic trace forms inm variables (Formula Presented) determined by a family L of q-linearized polynomials R over Fqm, and three related codes CL,0, CL,1, and CL,2. We describe the spectra for all these codes when L is an even rank family, in terms of the distribution of ranks of the forms QR in the family L, and we also computethe complete weight enumerator for CL. In particular, considering the family L = ‹xql›, with l fixed in N, we give the weight distribution of four parametrized families of cyclic codes Cl, Cl,0,Cl,1, and Cl,2 over Fq with zeros(Formula Presented) respectively,where q = ps with p prime, α is a generator of F*qm, and m/(m,l)is even. Finally, we give simple necessary and sufficient conditions for Artin–Schreier curves yp−y = xR(x)+βx, p prime, associated to polynomials R ∈ L to be optimal. We then obtain several maximal and minimal such curves inthe case (Formula Presented). |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/172738 Podesta, Ricardo Alberto; Videla Guzman, Denis Eduardo; Weight distribution of cyclic codes defined by quadratic forms and related curves; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 62; 1; 6-2021; 219-242 0041-6932 1669-9637 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/172738 |
identifier_str_mv |
Podesta, Ricardo Alberto; Videla Guzman, Denis Eduardo; Weight distribution of cyclic codes defined by quadratic forms and related curves; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 62; 1; 6-2021; 219-242 0041-6932 1669-9637 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://inmabb.criba.edu.ar/revuma/revuma.php?p=doi/v62n1a15 info:eu-repo/semantics/altIdentifier/doi/10.33044/revuma.1840 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Unión Matemática Argentina |
publisher.none.fl_str_mv |
Unión Matemática Argentina |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613380855300096 |
score |
13.070432 |