Predicting alfa, beta and gamma diversity from physiognomic and physical indicators as a tool for ecosystem monitoring
- Autores
- Cingolani, Ana María; Vaieretti, Maria Victoria; Gurvich, Diego Ezequiel; Giorgis, Melisa Adriana; Cabido, Marcelo Ruben
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We searched for predictive models for alpha, beta and gamma plant diversity based in easy to measure field indicators. The study was conducted on the upper belt of the Córdoba mountains (Argentina). We established 222 permanent plots of 4 × 4 m distributed on sites with different physiognomy, topography and management. At each plot we measured physical and physiognomic indicators and recorded the presence of all vascular plants. We estimated alpha diversity as the number of species detected in a plot, beta diversity as the floristic dissimilarity between two plots, and gamma diversity as the number of species detected in a landscape. Through linear regression we found predictive models for alpha and pair-wise beta diversity. Then we analysed if predicted average alpha and beta diversity were good estimators of gamma diversity. We recorded a total of 288 species (5–74 species per plot). Alpha diversity was highest in sites on shallow soils with high structural richness (i.e. high number of cover categories), half covered by lawns, at sunny slopes and rough landscapes (r2 = 0.66). For beta diversity, the difference between plots in structural richness and in cover of thick tussocks grasses and lawns were the best predictors (r2 = 0.45). For different sets of simulated landscapes, gamma diversity was well explained by predicted average alpha and beta diversity, plus the sampling effort (r2 = 0.92). We concluded that using easy to measure field indicators it is possible to estimate plant diversity at different levels with a good accuracy.
Fil: Cingolani, Ana María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina; Argentina. Universidad Nacional de Córdoba; Argentina
Fil: Vaieretti, Maria Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina; Argentina. Universidad Nacional de Córdoba; Argentina
Fil: Gurvich, Diego Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina; Argentina. Universidad Nacional de Córdoba; Argentina
Fil: Giorgis, Melisa Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina; Argentina. Universidad Nacional de Córdoba; Argentina
Fil: Cabido, Marcelo Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina; Argentina. Universidad Nacional de Córdoba; Argentina - Materia
-
Botanic Dissimilarity
Gamma Diversity
Growths-Forms
Landscape - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/14994
Ver los metadatos del registro completo
id |
CONICETDig_1ef01f8c06826df0c47990ac917d59c0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/14994 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Predicting alfa, beta and gamma diversity from physiognomic and physical indicators as a tool for ecosystem monitoringCingolani, Ana MaríaVaieretti, Maria VictoriaGurvich, Diego EzequielGiorgis, Melisa AdrianaCabido, Marcelo RubenBotanic DissimilarityGamma DiversityGrowths-FormsLandscapehttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1We searched for predictive models for alpha, beta and gamma plant diversity based in easy to measure field indicators. The study was conducted on the upper belt of the Córdoba mountains (Argentina). We established 222 permanent plots of 4 × 4 m distributed on sites with different physiognomy, topography and management. At each plot we measured physical and physiognomic indicators and recorded the presence of all vascular plants. We estimated alpha diversity as the number of species detected in a plot, beta diversity as the floristic dissimilarity between two plots, and gamma diversity as the number of species detected in a landscape. Through linear regression we found predictive models for alpha and pair-wise beta diversity. Then we analysed if predicted average alpha and beta diversity were good estimators of gamma diversity. We recorded a total of 288 species (5–74 species per plot). Alpha diversity was highest in sites on shallow soils with high structural richness (i.e. high number of cover categories), half covered by lawns, at sunny slopes and rough landscapes (r2 = 0.66). For beta diversity, the difference between plots in structural richness and in cover of thick tussocks grasses and lawns were the best predictors (r2 = 0.45). For different sets of simulated landscapes, gamma diversity was well explained by predicted average alpha and beta diversity, plus the sampling effort (r2 = 0.92). We concluded that using easy to measure field indicators it is possible to estimate plant diversity at different levels with a good accuracy.Fil: Cingolani, Ana María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina; Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Vaieretti, Maria Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina; Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Gurvich, Diego Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina; Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Giorgis, Melisa Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina; Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Cabido, Marcelo Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina; Argentina. Universidad Nacional de Córdoba; ArgentinaElsevier2010-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14994Cingolani, Ana María; Vaieretti, Maria Victoria; Gurvich, Diego Ezequiel; Giorgis, Melisa Adriana; Cabido, Marcelo Ruben; Predicting alfa, beta and gamma diversity from physiognomic and physical indicators as a tool for ecosystem monitoring; Elsevier; Biological Conservation; 143; 11; 8-2010; 2570-25770006-3207enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.biocon.2010.06.026info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0006320710002922info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:58Zoai:ri.conicet.gov.ar:11336/14994instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:58.711CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Predicting alfa, beta and gamma diversity from physiognomic and physical indicators as a tool for ecosystem monitoring |
title |
Predicting alfa, beta and gamma diversity from physiognomic and physical indicators as a tool for ecosystem monitoring |
spellingShingle |
Predicting alfa, beta and gamma diversity from physiognomic and physical indicators as a tool for ecosystem monitoring Cingolani, Ana María Botanic Dissimilarity Gamma Diversity Growths-Forms Landscape |
title_short |
Predicting alfa, beta and gamma diversity from physiognomic and physical indicators as a tool for ecosystem monitoring |
title_full |
Predicting alfa, beta and gamma diversity from physiognomic and physical indicators as a tool for ecosystem monitoring |
title_fullStr |
Predicting alfa, beta and gamma diversity from physiognomic and physical indicators as a tool for ecosystem monitoring |
title_full_unstemmed |
Predicting alfa, beta and gamma diversity from physiognomic and physical indicators as a tool for ecosystem monitoring |
title_sort |
Predicting alfa, beta and gamma diversity from physiognomic and physical indicators as a tool for ecosystem monitoring |
dc.creator.none.fl_str_mv |
Cingolani, Ana María Vaieretti, Maria Victoria Gurvich, Diego Ezequiel Giorgis, Melisa Adriana Cabido, Marcelo Ruben |
author |
Cingolani, Ana María |
author_facet |
Cingolani, Ana María Vaieretti, Maria Victoria Gurvich, Diego Ezequiel Giorgis, Melisa Adriana Cabido, Marcelo Ruben |
author_role |
author |
author2 |
Vaieretti, Maria Victoria Gurvich, Diego Ezequiel Giorgis, Melisa Adriana Cabido, Marcelo Ruben |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Botanic Dissimilarity Gamma Diversity Growths-Forms Landscape |
topic |
Botanic Dissimilarity Gamma Diversity Growths-Forms Landscape |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We searched for predictive models for alpha, beta and gamma plant diversity based in easy to measure field indicators. The study was conducted on the upper belt of the Córdoba mountains (Argentina). We established 222 permanent plots of 4 × 4 m distributed on sites with different physiognomy, topography and management. At each plot we measured physical and physiognomic indicators and recorded the presence of all vascular plants. We estimated alpha diversity as the number of species detected in a plot, beta diversity as the floristic dissimilarity between two plots, and gamma diversity as the number of species detected in a landscape. Through linear regression we found predictive models for alpha and pair-wise beta diversity. Then we analysed if predicted average alpha and beta diversity were good estimators of gamma diversity. We recorded a total of 288 species (5–74 species per plot). Alpha diversity was highest in sites on shallow soils with high structural richness (i.e. high number of cover categories), half covered by lawns, at sunny slopes and rough landscapes (r2 = 0.66). For beta diversity, the difference between plots in structural richness and in cover of thick tussocks grasses and lawns were the best predictors (r2 = 0.45). For different sets of simulated landscapes, gamma diversity was well explained by predicted average alpha and beta diversity, plus the sampling effort (r2 = 0.92). We concluded that using easy to measure field indicators it is possible to estimate plant diversity at different levels with a good accuracy. Fil: Cingolani, Ana María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina; Argentina. Universidad Nacional de Córdoba; Argentina Fil: Vaieretti, Maria Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina; Argentina. Universidad Nacional de Córdoba; Argentina Fil: Gurvich, Diego Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina; Argentina. Universidad Nacional de Córdoba; Argentina Fil: Giorgis, Melisa Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina; Argentina. Universidad Nacional de Córdoba; Argentina Fil: Cabido, Marcelo Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina; Argentina. Universidad Nacional de Córdoba; Argentina |
description |
We searched for predictive models for alpha, beta and gamma plant diversity based in easy to measure field indicators. The study was conducted on the upper belt of the Córdoba mountains (Argentina). We established 222 permanent plots of 4 × 4 m distributed on sites with different physiognomy, topography and management. At each plot we measured physical and physiognomic indicators and recorded the presence of all vascular plants. We estimated alpha diversity as the number of species detected in a plot, beta diversity as the floristic dissimilarity between two plots, and gamma diversity as the number of species detected in a landscape. Through linear regression we found predictive models for alpha and pair-wise beta diversity. Then we analysed if predicted average alpha and beta diversity were good estimators of gamma diversity. We recorded a total of 288 species (5–74 species per plot). Alpha diversity was highest in sites on shallow soils with high structural richness (i.e. high number of cover categories), half covered by lawns, at sunny slopes and rough landscapes (r2 = 0.66). For beta diversity, the difference between plots in structural richness and in cover of thick tussocks grasses and lawns were the best predictors (r2 = 0.45). For different sets of simulated landscapes, gamma diversity was well explained by predicted average alpha and beta diversity, plus the sampling effort (r2 = 0.92). We concluded that using easy to measure field indicators it is possible to estimate plant diversity at different levels with a good accuracy. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/14994 Cingolani, Ana María; Vaieretti, Maria Victoria; Gurvich, Diego Ezequiel; Giorgis, Melisa Adriana; Cabido, Marcelo Ruben; Predicting alfa, beta and gamma diversity from physiognomic and physical indicators as a tool for ecosystem monitoring; Elsevier; Biological Conservation; 143; 11; 8-2010; 2570-2577 0006-3207 |
url |
http://hdl.handle.net/11336/14994 |
identifier_str_mv |
Cingolani, Ana María; Vaieretti, Maria Victoria; Gurvich, Diego Ezequiel; Giorgis, Melisa Adriana; Cabido, Marcelo Ruben; Predicting alfa, beta and gamma diversity from physiognomic and physical indicators as a tool for ecosystem monitoring; Elsevier; Biological Conservation; 143; 11; 8-2010; 2570-2577 0006-3207 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.biocon.2010.06.026 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0006320710002922 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613162820698112 |
score |
13.070432 |