Bio-Inspired Multiobjective Optimization for Designing Content Distribution Networks
- Autores
- Goñi, Gerardo; Nesmachnow, Sergio; Rossit, Diego Gabriel; Moreno Bernal, Pedro; Tchernykh, Andrei
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This article studies the effective design of content distribution networks over cloud computing platforms. This problem is relevant nowadays to provide fast and reliable access to content on the internet. A bio-inspired evolutionary multiobjective optimization approach is applied as a viable alternative to solve realistic problem instances where exact optimization methods are not applicable. Ad hoc representation and search operators are applied to optimize relevant metrics from the point of view of both system administrators and users. In the evaluation of problem instances built using real data, the evolutionary multiobjective optimization approach was able to compute more accurate solutions in terms of cost and quality of service when compared to the exact resolution method. The obtained results represent an improvement over greedy heuristics from 47.6% to 93.3% in terms of cost while maintaining competitive quality of service. In addition, the computed solutions had different tradeoffs between the problem objectives. This can provide different options for content distribution network design, allowing for a fast configuration that fulfills specific quality of service demands.
Fil: Goñi, Gerardo. Universidad de la República; Uruguay
Fil: Nesmachnow, Sergio. Universidad de la República; Uruguay
Fil: Rossit, Diego Gabriel. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Moreno Bernal, Pedro. Universidad Autónoma del Estado de Morelos.; México
Fil: Tchernykh, Andrei. Consejo Nacional de Ciencia y Tecnología de México. Centro de Investigación Científica y de Educación Superior de Ensenada Baja California; México - Materia
-
CONTENT DISTRIBUTION NETWORKS
EVOLUTIONARY ALGORITHMS
OPTIMIZATION
CLOUD COMPUTING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/260892
Ver los metadatos del registro completo
| id |
CONICETDig_1ee3236af9beb3bc39671d10a2353fd9 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/260892 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Bio-Inspired Multiobjective Optimization for Designing Content Distribution NetworksGoñi, GerardoNesmachnow, SergioRossit, Diego GabrielMoreno Bernal, PedroTchernykh, AndreiCONTENT DISTRIBUTION NETWORKSEVOLUTIONARY ALGORITHMSOPTIMIZATIONCLOUD COMPUTINGhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2This article studies the effective design of content distribution networks over cloud computing platforms. This problem is relevant nowadays to provide fast and reliable access to content on the internet. A bio-inspired evolutionary multiobjective optimization approach is applied as a viable alternative to solve realistic problem instances where exact optimization methods are not applicable. Ad hoc representation and search operators are applied to optimize relevant metrics from the point of view of both system administrators and users. In the evaluation of problem instances built using real data, the evolutionary multiobjective optimization approach was able to compute more accurate solutions in terms of cost and quality of service when compared to the exact resolution method. The obtained results represent an improvement over greedy heuristics from 47.6% to 93.3% in terms of cost while maintaining competitive quality of service. In addition, the computed solutions had different tradeoffs between the problem objectives. This can provide different options for content distribution network design, allowing for a fast configuration that fulfills specific quality of service demands.Fil: Goñi, Gerardo. Universidad de la República; UruguayFil: Nesmachnow, Sergio. Universidad de la República; UruguayFil: Rossit, Diego Gabriel. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Moreno Bernal, Pedro. Universidad Autónoma del Estado de Morelos.; MéxicoFil: Tchernykh, Andrei. Consejo Nacional de Ciencia y Tecnología de México. Centro de Investigación Científica y de Educación Superior de Ensenada Baja California; MéxicoMultidisciplinary Digital Publishing Institute2025-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/260892Goñi, Gerardo; Nesmachnow, Sergio; Rossit, Diego Gabriel; Moreno Bernal, Pedro; Tchernykh, Andrei; Bio-Inspired Multiobjective Optimization for Designing Content Distribution Networks; Multidisciplinary Digital Publishing Institute; Mathematical and Computational Applications; 30; 2; 4-2025; 1-351300-686X2297-8747CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2297-8747/30/2/45info:eu-repo/semantics/altIdentifier/doi/10.3390/mca30020045info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T14:07:50Zoai:ri.conicet.gov.ar:11336/260892instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 14:07:50.387CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Bio-Inspired Multiobjective Optimization for Designing Content Distribution Networks |
| title |
Bio-Inspired Multiobjective Optimization for Designing Content Distribution Networks |
| spellingShingle |
Bio-Inspired Multiobjective Optimization for Designing Content Distribution Networks Goñi, Gerardo CONTENT DISTRIBUTION NETWORKS EVOLUTIONARY ALGORITHMS OPTIMIZATION CLOUD COMPUTING |
| title_short |
Bio-Inspired Multiobjective Optimization for Designing Content Distribution Networks |
| title_full |
Bio-Inspired Multiobjective Optimization for Designing Content Distribution Networks |
| title_fullStr |
Bio-Inspired Multiobjective Optimization for Designing Content Distribution Networks |
| title_full_unstemmed |
Bio-Inspired Multiobjective Optimization for Designing Content Distribution Networks |
| title_sort |
Bio-Inspired Multiobjective Optimization for Designing Content Distribution Networks |
| dc.creator.none.fl_str_mv |
Goñi, Gerardo Nesmachnow, Sergio Rossit, Diego Gabriel Moreno Bernal, Pedro Tchernykh, Andrei |
| author |
Goñi, Gerardo |
| author_facet |
Goñi, Gerardo Nesmachnow, Sergio Rossit, Diego Gabriel Moreno Bernal, Pedro Tchernykh, Andrei |
| author_role |
author |
| author2 |
Nesmachnow, Sergio Rossit, Diego Gabriel Moreno Bernal, Pedro Tchernykh, Andrei |
| author2_role |
author author author author |
| dc.subject.none.fl_str_mv |
CONTENT DISTRIBUTION NETWORKS EVOLUTIONARY ALGORITHMS OPTIMIZATION CLOUD COMPUTING |
| topic |
CONTENT DISTRIBUTION NETWORKS EVOLUTIONARY ALGORITHMS OPTIMIZATION CLOUD COMPUTING |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
This article studies the effective design of content distribution networks over cloud computing platforms. This problem is relevant nowadays to provide fast and reliable access to content on the internet. A bio-inspired evolutionary multiobjective optimization approach is applied as a viable alternative to solve realistic problem instances where exact optimization methods are not applicable. Ad hoc representation and search operators are applied to optimize relevant metrics from the point of view of both system administrators and users. In the evaluation of problem instances built using real data, the evolutionary multiobjective optimization approach was able to compute more accurate solutions in terms of cost and quality of service when compared to the exact resolution method. The obtained results represent an improvement over greedy heuristics from 47.6% to 93.3% in terms of cost while maintaining competitive quality of service. In addition, the computed solutions had different tradeoffs between the problem objectives. This can provide different options for content distribution network design, allowing for a fast configuration that fulfills specific quality of service demands. Fil: Goñi, Gerardo. Universidad de la República; Uruguay Fil: Nesmachnow, Sergio. Universidad de la República; Uruguay Fil: Rossit, Diego Gabriel. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina Fil: Moreno Bernal, Pedro. Universidad Autónoma del Estado de Morelos.; México Fil: Tchernykh, Andrei. Consejo Nacional de Ciencia y Tecnología de México. Centro de Investigación Científica y de Educación Superior de Ensenada Baja California; México |
| description |
This article studies the effective design of content distribution networks over cloud computing platforms. This problem is relevant nowadays to provide fast and reliable access to content on the internet. A bio-inspired evolutionary multiobjective optimization approach is applied as a viable alternative to solve realistic problem instances where exact optimization methods are not applicable. Ad hoc representation and search operators are applied to optimize relevant metrics from the point of view of both system administrators and users. In the evaluation of problem instances built using real data, the evolutionary multiobjective optimization approach was able to compute more accurate solutions in terms of cost and quality of service when compared to the exact resolution method. The obtained results represent an improvement over greedy heuristics from 47.6% to 93.3% in terms of cost while maintaining competitive quality of service. In addition, the computed solutions had different tradeoffs between the problem objectives. This can provide different options for content distribution network design, allowing for a fast configuration that fulfills specific quality of service demands. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-04 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/260892 Goñi, Gerardo; Nesmachnow, Sergio; Rossit, Diego Gabriel; Moreno Bernal, Pedro; Tchernykh, Andrei; Bio-Inspired Multiobjective Optimization for Designing Content Distribution Networks; Multidisciplinary Digital Publishing Institute; Mathematical and Computational Applications; 30; 2; 4-2025; 1-35 1300-686X 2297-8747 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/260892 |
| identifier_str_mv |
Goñi, Gerardo; Nesmachnow, Sergio; Rossit, Diego Gabriel; Moreno Bernal, Pedro; Tchernykh, Andrei; Bio-Inspired Multiobjective Optimization for Designing Content Distribution Networks; Multidisciplinary Digital Publishing Institute; Mathematical and Computational Applications; 30; 2; 4-2025; 1-35 1300-686X 2297-8747 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2297-8747/30/2/45 info:eu-repo/semantics/altIdentifier/doi/10.3390/mca30020045 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
| publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1852335550823923712 |
| score |
12.952241 |