Reducing energy usage in resource-intensive Java-based scientific applications via micro-benchmark based code refactorings
- Autores
- Longo, Mathias; Rodriguez, Ana Virginia; Mateos Diaz, Cristian Maximiliano; Zunino Suarez, Alejandro Octavio
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In-silico research has grown considerably. Today's scientific code involves long-running computer simulations and hence powerful computing infrastructures are needed. Traditionally, research in high-performance computing has focused on executing code as fast as possible, while energy has been recently recognized as another goal to consider. Yet, energy-driven research has mostly focused on the hardware and middleware layers, but few efforts target the application level, where many energy-aware optimizations are possible. We revisit a catalog of Java primitives commonly used in OO scientific programming, or micro-benchmarks, to identify energy-friendly versions of the same primitive. We then apply the micro-benchmarks to classical scientific application kernels and machine learning algorithms for both single-thread and multi-thread implementations on a server. Energy usage reductions at the micro-benchmark level are substantial, while for applications obtained reductions range from 3.90% to 99.18%.
Fil: Longo, Mathias. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina. University of Southern California; Estados Unidos
Fil: Rodriguez, Ana Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina - Materia
-
Energy
Scientific applications
Java
Micro-benchmarks
Code refactoring - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/121006
Ver los metadatos del registro completo
id |
CONICETDig_1ed6f289ca5316d837f13ba77fda2738 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/121006 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Reducing energy usage in resource-intensive Java-based scientific applications via micro-benchmark based code refactoringsLongo, MathiasRodriguez, Ana VirginiaMateos Diaz, Cristian MaximilianoZunino Suarez, Alejandro OctavioEnergyScientific applicationsJavaMicro-benchmarksCode refactoringhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In-silico research has grown considerably. Today's scientific code involves long-running computer simulations and hence powerful computing infrastructures are needed. Traditionally, research in high-performance computing has focused on executing code as fast as possible, while energy has been recently recognized as another goal to consider. Yet, energy-driven research has mostly focused on the hardware and middleware layers, but few efforts target the application level, where many energy-aware optimizations are possible. We revisit a catalog of Java primitives commonly used in OO scientific programming, or micro-benchmarks, to identify energy-friendly versions of the same primitive. We then apply the micro-benchmarks to classical scientific application kernels and machine learning algorithms for both single-thread and multi-thread implementations on a server. Energy usage reductions at the micro-benchmark level are substantial, while for applications obtained reductions range from 3.90% to 99.18%.Fil: Longo, Mathias. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina. University of Southern California; Estados UnidosFil: Rodriguez, Ana Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaComsis Consortium2019-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/121006Longo, Mathias; Rodriguez, Ana Virginia; Mateos Diaz, Cristian Maximiliano; Zunino Suarez, Alejandro Octavio; Reducing energy usage in resource-intensive Java-based scientific applications via micro-benchmark based code refactorings; Comsis Consortium; Computer Science And Information Systems; 16; 2; 6-2019; 541-5641820-0214CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.comsis.org/archive.php?show=ppr675-1806info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:23:59Zoai:ri.conicet.gov.ar:11336/121006instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:23:59.599CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Reducing energy usage in resource-intensive Java-based scientific applications via micro-benchmark based code refactorings |
title |
Reducing energy usage in resource-intensive Java-based scientific applications via micro-benchmark based code refactorings |
spellingShingle |
Reducing energy usage in resource-intensive Java-based scientific applications via micro-benchmark based code refactorings Longo, Mathias Energy Scientific applications Java Micro-benchmarks Code refactoring |
title_short |
Reducing energy usage in resource-intensive Java-based scientific applications via micro-benchmark based code refactorings |
title_full |
Reducing energy usage in resource-intensive Java-based scientific applications via micro-benchmark based code refactorings |
title_fullStr |
Reducing energy usage in resource-intensive Java-based scientific applications via micro-benchmark based code refactorings |
title_full_unstemmed |
Reducing energy usage in resource-intensive Java-based scientific applications via micro-benchmark based code refactorings |
title_sort |
Reducing energy usage in resource-intensive Java-based scientific applications via micro-benchmark based code refactorings |
dc.creator.none.fl_str_mv |
Longo, Mathias Rodriguez, Ana Virginia Mateos Diaz, Cristian Maximiliano Zunino Suarez, Alejandro Octavio |
author |
Longo, Mathias |
author_facet |
Longo, Mathias Rodriguez, Ana Virginia Mateos Diaz, Cristian Maximiliano Zunino Suarez, Alejandro Octavio |
author_role |
author |
author2 |
Rodriguez, Ana Virginia Mateos Diaz, Cristian Maximiliano Zunino Suarez, Alejandro Octavio |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Energy Scientific applications Java Micro-benchmarks Code refactoring |
topic |
Energy Scientific applications Java Micro-benchmarks Code refactoring |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In-silico research has grown considerably. Today's scientific code involves long-running computer simulations and hence powerful computing infrastructures are needed. Traditionally, research in high-performance computing has focused on executing code as fast as possible, while energy has been recently recognized as another goal to consider. Yet, energy-driven research has mostly focused on the hardware and middleware layers, but few efforts target the application level, where many energy-aware optimizations are possible. We revisit a catalog of Java primitives commonly used in OO scientific programming, or micro-benchmarks, to identify energy-friendly versions of the same primitive. We then apply the micro-benchmarks to classical scientific application kernels and machine learning algorithms for both single-thread and multi-thread implementations on a server. Energy usage reductions at the micro-benchmark level are substantial, while for applications obtained reductions range from 3.90% to 99.18%. Fil: Longo, Mathias. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina. University of Southern California; Estados Unidos Fil: Rodriguez, Ana Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina Fil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina |
description |
In-silico research has grown considerably. Today's scientific code involves long-running computer simulations and hence powerful computing infrastructures are needed. Traditionally, research in high-performance computing has focused on executing code as fast as possible, while energy has been recently recognized as another goal to consider. Yet, energy-driven research has mostly focused on the hardware and middleware layers, but few efforts target the application level, where many energy-aware optimizations are possible. We revisit a catalog of Java primitives commonly used in OO scientific programming, or micro-benchmarks, to identify energy-friendly versions of the same primitive. We then apply the micro-benchmarks to classical scientific application kernels and machine learning algorithms for both single-thread and multi-thread implementations on a server. Energy usage reductions at the micro-benchmark level are substantial, while for applications obtained reductions range from 3.90% to 99.18%. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/121006 Longo, Mathias; Rodriguez, Ana Virginia; Mateos Diaz, Cristian Maximiliano; Zunino Suarez, Alejandro Octavio; Reducing energy usage in resource-intensive Java-based scientific applications via micro-benchmark based code refactorings; Comsis Consortium; Computer Science And Information Systems; 16; 2; 6-2019; 541-564 1820-0214 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/121006 |
identifier_str_mv |
Longo, Mathias; Rodriguez, Ana Virginia; Mateos Diaz, Cristian Maximiliano; Zunino Suarez, Alejandro Octavio; Reducing energy usage in resource-intensive Java-based scientific applications via micro-benchmark based code refactorings; Comsis Consortium; Computer Science And Information Systems; 16; 2; 6-2019; 541-564 1820-0214 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.comsis.org/archive.php?show=ppr675-1806 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Comsis Consortium |
publisher.none.fl_str_mv |
Comsis Consortium |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082656298598400 |
score |
13.22299 |