Aqueous solution chemistry in silico and the role of data-driven approaches
- Autores
- Banerjee, Debarshi; Azizi, Khatereh; Egan, Colin K.; Donkor, Edward Danquah; Malosso, Cesare; Di Pino, Solana Magalí; Díaz Mirón, Gonzalo; Stella, Martina; Sormani, Giulia; Neza Hozana, Germaine; Monti, Marta; Morzan, Uriel; Rodriguez, Alex; Cassone, Giuseppe; Jelic, Asja; Scherlis Perel, Damian Ariel; Hassanali, Ali
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The use of computer simulations to study the properties of aqueous systems is, today more than ever, an active area of research. In this context, during the last decade there has been a tremendous growth in the use of data-driven approaches to develop more accurate potentials for water as well as to characterize its complexity in chemical and biological contexts. We highlight the progress, giving a historical context, on the path to the development of many-body and reactive potentials to model aqueous chemistry, including the role of machine learning strategies. We focus specifically on conceptual and methodological challenges along the way in performing simulations that seek to tackle problems in modeling the chemistry of aqueous solutions. In conclusion, we summarize our perspectives on the use and integration of advanced data-science techniques to provide chemical insights into physical chemistry and how this will influence computer simulations of aqueous systems in the future.
Fil: Banerjee, Debarshi. The Abdus Salam. International Centre for Theoretical Physics; Italia
Fil: Azizi, Khatereh. The Abdus Salam. International Centre for Theoretical Physics; Italia
Fil: Egan, Colin K.. The Abdus Salam. International Centre for Theoretical Physics; Italia
Fil: Donkor, Edward Danquah. The Abdus Salam. International Centre for Theoretical Physics; Italia
Fil: Malosso, Cesare. The Abdus Salam. International Centre for Theoretical Physics; Italia
Fil: Di Pino, Solana Magalí. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Díaz Mirón, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Stella, Martina. The Abdus Salam. International Centre for Theoretical Physics; Italia
Fil: Sormani, Giulia. The Abdus Salam. International Centre for Theoretical Physics; Italia
Fil: Neza Hozana, Germaine. The Abdus Salam. International Centre for Theoretical Physics; Italia
Fil: Monti, Marta. The Abdus Salam. International Centre for Theoretical Physics; Italia
Fil: Morzan, Uriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Rodriguez, Alex. The Abdus Salam. International Centre for Theoretical Physics; Italia
Fil: Cassone, Giuseppe. The Abdus Salam. International Centre for Theoretical Physics; Italia
Fil: Jelic, Asja. The Abdus Salam. International Centre for Theoretical Physics; Italia
Fil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Hassanali, Ali. The Abdus Salam. International Centre for Theoretical Physics; Italia - Materia
-
DFT
Molecular dyamics
water
machine learning - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/266159
Ver los metadatos del registro completo
id |
CONICETDig_1e876e8fef8d482ba2f361f09462d8e6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/266159 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Aqueous solution chemistry in silico and the role of data-driven approachesBanerjee, DebarshiAzizi, KhaterehEgan, Colin K.Donkor, Edward DanquahMalosso, CesareDi Pino, Solana MagalíDíaz Mirón, GonzaloStella, MartinaSormani, GiuliaNeza Hozana, GermaineMonti, MartaMorzan, UrielRodriguez, AlexCassone, GiuseppeJelic, AsjaScherlis Perel, Damian ArielHassanali, AliDFTMolecular dyamicswatermachine learninghttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The use of computer simulations to study the properties of aqueous systems is, today more than ever, an active area of research. In this context, during the last decade there has been a tremendous growth in the use of data-driven approaches to develop more accurate potentials for water as well as to characterize its complexity in chemical and biological contexts. We highlight the progress, giving a historical context, on the path to the development of many-body and reactive potentials to model aqueous chemistry, including the role of machine learning strategies. We focus specifically on conceptual and methodological challenges along the way in performing simulations that seek to tackle problems in modeling the chemistry of aqueous solutions. In conclusion, we summarize our perspectives on the use and integration of advanced data-science techniques to provide chemical insights into physical chemistry and how this will influence computer simulations of aqueous systems in the future.Fil: Banerjee, Debarshi. The Abdus Salam. International Centre for Theoretical Physics; ItaliaFil: Azizi, Khatereh. The Abdus Salam. International Centre for Theoretical Physics; ItaliaFil: Egan, Colin K.. The Abdus Salam. International Centre for Theoretical Physics; ItaliaFil: Donkor, Edward Danquah. The Abdus Salam. International Centre for Theoretical Physics; ItaliaFil: Malosso, Cesare. The Abdus Salam. International Centre for Theoretical Physics; ItaliaFil: Di Pino, Solana Magalí. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Díaz Mirón, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Stella, Martina. The Abdus Salam. International Centre for Theoretical Physics; ItaliaFil: Sormani, Giulia. The Abdus Salam. International Centre for Theoretical Physics; ItaliaFil: Neza Hozana, Germaine. The Abdus Salam. International Centre for Theoretical Physics; ItaliaFil: Monti, Marta. The Abdus Salam. International Centre for Theoretical Physics; ItaliaFil: Morzan, Uriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Rodriguez, Alex. The Abdus Salam. International Centre for Theoretical Physics; ItaliaFil: Cassone, Giuseppe. The Abdus Salam. International Centre for Theoretical Physics; ItaliaFil: Jelic, Asja. The Abdus Salam. International Centre for Theoretical Physics; ItaliaFil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Hassanali, Ali. The Abdus Salam. International Centre for Theoretical Physics; ItaliaAmerican Institute of Physics2024-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/266159Banerjee, Debarshi; Azizi, Khatereh; Egan, Colin K.; Donkor, Edward Danquah; Malosso, Cesare; et al.; Aqueous solution chemistry in silico and the role of data-driven approaches; American Institute of Physics; Chemical Physics Reviews; 5; 2; 6-2024; 1-232688-4070CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/cpr/article/5/2/021308/3300328/Aqueous-solution-chemistry-in-silico-and-the-roleinfo:eu-repo/semantics/altIdentifier/doi/10.1063/5.0207567info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:14:35Zoai:ri.conicet.gov.ar:11336/266159instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:14:35.741CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Aqueous solution chemistry in silico and the role of data-driven approaches |
title |
Aqueous solution chemistry in silico and the role of data-driven approaches |
spellingShingle |
Aqueous solution chemistry in silico and the role of data-driven approaches Banerjee, Debarshi DFT Molecular dyamics water machine learning |
title_short |
Aqueous solution chemistry in silico and the role of data-driven approaches |
title_full |
Aqueous solution chemistry in silico and the role of data-driven approaches |
title_fullStr |
Aqueous solution chemistry in silico and the role of data-driven approaches |
title_full_unstemmed |
Aqueous solution chemistry in silico and the role of data-driven approaches |
title_sort |
Aqueous solution chemistry in silico and the role of data-driven approaches |
dc.creator.none.fl_str_mv |
Banerjee, Debarshi Azizi, Khatereh Egan, Colin K. Donkor, Edward Danquah Malosso, Cesare Di Pino, Solana Magalí Díaz Mirón, Gonzalo Stella, Martina Sormani, Giulia Neza Hozana, Germaine Monti, Marta Morzan, Uriel Rodriguez, Alex Cassone, Giuseppe Jelic, Asja Scherlis Perel, Damian Ariel Hassanali, Ali |
author |
Banerjee, Debarshi |
author_facet |
Banerjee, Debarshi Azizi, Khatereh Egan, Colin K. Donkor, Edward Danquah Malosso, Cesare Di Pino, Solana Magalí Díaz Mirón, Gonzalo Stella, Martina Sormani, Giulia Neza Hozana, Germaine Monti, Marta Morzan, Uriel Rodriguez, Alex Cassone, Giuseppe Jelic, Asja Scherlis Perel, Damian Ariel Hassanali, Ali |
author_role |
author |
author2 |
Azizi, Khatereh Egan, Colin K. Donkor, Edward Danquah Malosso, Cesare Di Pino, Solana Magalí Díaz Mirón, Gonzalo Stella, Martina Sormani, Giulia Neza Hozana, Germaine Monti, Marta Morzan, Uriel Rodriguez, Alex Cassone, Giuseppe Jelic, Asja Scherlis Perel, Damian Ariel Hassanali, Ali |
author2_role |
author author author author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
DFT Molecular dyamics water machine learning |
topic |
DFT Molecular dyamics water machine learning |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The use of computer simulations to study the properties of aqueous systems is, today more than ever, an active area of research. In this context, during the last decade there has been a tremendous growth in the use of data-driven approaches to develop more accurate potentials for water as well as to characterize its complexity in chemical and biological contexts. We highlight the progress, giving a historical context, on the path to the development of many-body and reactive potentials to model aqueous chemistry, including the role of machine learning strategies. We focus specifically on conceptual and methodological challenges along the way in performing simulations that seek to tackle problems in modeling the chemistry of aqueous solutions. In conclusion, we summarize our perspectives on the use and integration of advanced data-science techniques to provide chemical insights into physical chemistry and how this will influence computer simulations of aqueous systems in the future. Fil: Banerjee, Debarshi. The Abdus Salam. International Centre for Theoretical Physics; Italia Fil: Azizi, Khatereh. The Abdus Salam. International Centre for Theoretical Physics; Italia Fil: Egan, Colin K.. The Abdus Salam. International Centre for Theoretical Physics; Italia Fil: Donkor, Edward Danquah. The Abdus Salam. International Centre for Theoretical Physics; Italia Fil: Malosso, Cesare. The Abdus Salam. International Centre for Theoretical Physics; Italia Fil: Di Pino, Solana Magalí. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Díaz Mirón, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Stella, Martina. The Abdus Salam. International Centre for Theoretical Physics; Italia Fil: Sormani, Giulia. The Abdus Salam. International Centre for Theoretical Physics; Italia Fil: Neza Hozana, Germaine. The Abdus Salam. International Centre for Theoretical Physics; Italia Fil: Monti, Marta. The Abdus Salam. International Centre for Theoretical Physics; Italia Fil: Morzan, Uriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Rodriguez, Alex. The Abdus Salam. International Centre for Theoretical Physics; Italia Fil: Cassone, Giuseppe. The Abdus Salam. International Centre for Theoretical Physics; Italia Fil: Jelic, Asja. The Abdus Salam. International Centre for Theoretical Physics; Italia Fil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Hassanali, Ali. The Abdus Salam. International Centre for Theoretical Physics; Italia |
description |
The use of computer simulations to study the properties of aqueous systems is, today more than ever, an active area of research. In this context, during the last decade there has been a tremendous growth in the use of data-driven approaches to develop more accurate potentials for water as well as to characterize its complexity in chemical and biological contexts. We highlight the progress, giving a historical context, on the path to the development of many-body and reactive potentials to model aqueous chemistry, including the role of machine learning strategies. We focus specifically on conceptual and methodological challenges along the way in performing simulations that seek to tackle problems in modeling the chemistry of aqueous solutions. In conclusion, we summarize our perspectives on the use and integration of advanced data-science techniques to provide chemical insights into physical chemistry and how this will influence computer simulations of aqueous systems in the future. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/266159 Banerjee, Debarshi; Azizi, Khatereh; Egan, Colin K.; Donkor, Edward Danquah; Malosso, Cesare; et al.; Aqueous solution chemistry in silico and the role of data-driven approaches; American Institute of Physics; Chemical Physics Reviews; 5; 2; 6-2024; 1-23 2688-4070 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/266159 |
identifier_str_mv |
Banerjee, Debarshi; Azizi, Khatereh; Egan, Colin K.; Donkor, Edward Danquah; Malosso, Cesare; et al.; Aqueous solution chemistry in silico and the role of data-driven approaches; American Institute of Physics; Chemical Physics Reviews; 5; 2; 6-2024; 1-23 2688-4070 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/cpr/article/5/2/021308/3300328/Aqueous-solution-chemistry-in-silico-and-the-role info:eu-repo/semantics/altIdentifier/doi/10.1063/5.0207567 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614075240153088 |
score |
13.070432 |