Properties of the solutions to the Monge-Ampère equation
- Autores
- Forzani, Liliana Maria; Maldonado, Diego
- Año de publicación
- 2004
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider solutions to the equation detD2φ=μ when μ has a doubling property. We prove new geometric characterizations for this doubling property (by means of the so-called engulfing property) and deduce the quantitative behaviour of φ. Also, a constructive approach to the celebrated C1,β-estimates proved by L. Caffarelli is presented, settling one of the open questions posed by Villani (Amer. Math. Soc. 58 (2003)).
Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Maldonado, Diego. University Of Kansas, Lawrence; - Materia
-
MONGE-AMPÈRE EQUATION
MONGE-AMPÈRE MEASURE
SECTIONS OF CONVEX FUNCTIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/100624
Ver los metadatos del registro completo
id |
CONICETDig_1e76c6272ce134803aafc9733bd020ad |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/100624 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Properties of the solutions to the Monge-Ampère equationForzani, Liliana MariaMaldonado, DiegoMONGE-AMPÈRE EQUATIONMONGE-AMPÈRE MEASURESECTIONS OF CONVEX FUNCTIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider solutions to the equation detD2φ=μ when μ has a doubling property. We prove new geometric characterizations for this doubling property (by means of the so-called engulfing property) and deduce the quantitative behaviour of φ. Also, a constructive approach to the celebrated C1,β-estimates proved by L. Caffarelli is presented, settling one of the open questions posed by Villani (Amer. Math. Soc. 58 (2003)).Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Maldonado, Diego. University Of Kansas, Lawrence; Pergamon-Elsevier Science Ltd2004-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100624Forzani, Liliana Maria; Maldonado, Diego; Properties of the solutions to the Monge-Ampère equation; Pergamon-Elsevier Science Ltd; Journal Of Nonlinear Analysis; 57; 5-6; 5-2004; 815-8290362-546XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.na.2004.03.019info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:01:42Zoai:ri.conicet.gov.ar:11336/100624instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:01:42.737CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Properties of the solutions to the Monge-Ampère equation |
title |
Properties of the solutions to the Monge-Ampère equation |
spellingShingle |
Properties of the solutions to the Monge-Ampère equation Forzani, Liliana Maria MONGE-AMPÈRE EQUATION MONGE-AMPÈRE MEASURE SECTIONS OF CONVEX FUNCTIONS |
title_short |
Properties of the solutions to the Monge-Ampère equation |
title_full |
Properties of the solutions to the Monge-Ampère equation |
title_fullStr |
Properties of the solutions to the Monge-Ampère equation |
title_full_unstemmed |
Properties of the solutions to the Monge-Ampère equation |
title_sort |
Properties of the solutions to the Monge-Ampère equation |
dc.creator.none.fl_str_mv |
Forzani, Liliana Maria Maldonado, Diego |
author |
Forzani, Liliana Maria |
author_facet |
Forzani, Liliana Maria Maldonado, Diego |
author_role |
author |
author2 |
Maldonado, Diego |
author2_role |
author |
dc.subject.none.fl_str_mv |
MONGE-AMPÈRE EQUATION MONGE-AMPÈRE MEASURE SECTIONS OF CONVEX FUNCTIONS |
topic |
MONGE-AMPÈRE EQUATION MONGE-AMPÈRE MEASURE SECTIONS OF CONVEX FUNCTIONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We consider solutions to the equation detD2φ=μ when μ has a doubling property. We prove new geometric characterizations for this doubling property (by means of the so-called engulfing property) and deduce the quantitative behaviour of φ. Also, a constructive approach to the celebrated C1,β-estimates proved by L. Caffarelli is presented, settling one of the open questions posed by Villani (Amer. Math. Soc. 58 (2003)). Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Maldonado, Diego. University Of Kansas, Lawrence; |
description |
We consider solutions to the equation detD2φ=μ when μ has a doubling property. We prove new geometric characterizations for this doubling property (by means of the so-called engulfing property) and deduce the quantitative behaviour of φ. Also, a constructive approach to the celebrated C1,β-estimates proved by L. Caffarelli is presented, settling one of the open questions posed by Villani (Amer. Math. Soc. 58 (2003)). |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/100624 Forzani, Liliana Maria; Maldonado, Diego; Properties of the solutions to the Monge-Ampère equation; Pergamon-Elsevier Science Ltd; Journal Of Nonlinear Analysis; 57; 5-6; 5-2004; 815-829 0362-546X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/100624 |
identifier_str_mv |
Forzani, Liliana Maria; Maldonado, Diego; Properties of the solutions to the Monge-Ampère equation; Pergamon-Elsevier Science Ltd; Journal Of Nonlinear Analysis; 57; 5-6; 5-2004; 815-829 0362-546X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.na.2004.03.019 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269712905404416 |
score |
13.13397 |