Are nanoporous materials radiation resistant?

Autores
Bringa, Eduardo Marcial; Monk, J. D.; Caro, A.; Misra, A.; Zepada Ruiz, L.; Duchaineau, M.; Abraham, F.; Nastasi, M.; Picraux, S.T.; Wang, Y.Q.; Farkas, D.
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The key to perfect radiation endurance is perfect recovery. Since surfaces are perfect sinks for defects, a porous material with a high surface to volume ratio has the potential to be extremely radiation tolerant, provided it is morphologically stable in a radiation environment. Experiments and computer simulations on nanoscale gold foams reported here show the existence of a window in the parameter space where foams are radiation tolerant. We analyze these results in terms of a model for the irradiation response that quantitatively locates such window that appears to be the consequence of the combined effect of two length scales dependent on the irradiation conditions: (i) foams with ligament diameters below a minimum value display ligament melting and breaking, together with compaction increasing with dose (this value is typically ∼5 nm for primary knock on atoms (PKA) of ∼15 keV in Au), while (ii) foams with ligament diameters above a maximum value show bulk behavior, that is, damage accumulation (few hundred nanometers for the PKA's energy and dose rate used in this study). In between these dimensions, (i.e., ∼100 nm in Au), defect migration to the ligament surface happens faster than the time between cascades, ensuring radiation resistance for a given dose-rate. We conclude that foams can be tailored to become radiation tolerant.
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Monk, J. D.. Louisiana State University. Cain Department of Chemical Engineering; Estados Unidos
Fil: Caro, A.. Los Alamos National Laboratory; Estados Unidos
Fil: Misra, A.. Los Alamos National Laboratory; Estados Unidos
Fil: Zepada Ruiz, L.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Duchaineau, M.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Abraham, F.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Nastasi, M.. Los Alamos National Laboratory; Estados Unidos
Fil: Picraux, S.T.. Los Alamos National Laboratory; Estados Unidos
Fil: Wang, Y.Q.. Los Alamos National Laboratory; Estados Unidos
Fil: Farkas, D.. Virginia Tech. Department of Materials Sciences; Estados Unidos
Materia
Radiation Damage
Nanofoams
Gold
Computer Simulations
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/20300

id CONICETDig_1d4ec984a9588b6c1fd88be50e0ee658
oai_identifier_str oai:ri.conicet.gov.ar:11336/20300
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Are nanoporous materials radiation resistant?Bringa, Eduardo MarcialMonk, J. D.Caro, A.Misra, A.Zepada Ruiz, L.Duchaineau, M.Abraham, F.Nastasi, M.Picraux, S.T.Wang, Y.Q.Farkas, D.Radiation DamageNanofoamsGoldComputer Simulationshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The key to perfect radiation endurance is perfect recovery. Since surfaces are perfect sinks for defects, a porous material with a high surface to volume ratio has the potential to be extremely radiation tolerant, provided it is morphologically stable in a radiation environment. Experiments and computer simulations on nanoscale gold foams reported here show the existence of a window in the parameter space where foams are radiation tolerant. We analyze these results in terms of a model for the irradiation response that quantitatively locates such window that appears to be the consequence of the combined effect of two length scales dependent on the irradiation conditions: (i) foams with ligament diameters below a minimum value display ligament melting and breaking, together with compaction increasing with dose (this value is typically ∼5 nm for primary knock on atoms (PKA) of ∼15 keV in Au), while (ii) foams with ligament diameters above a maximum value show bulk behavior, that is, damage accumulation (few hundred nanometers for the PKA's energy and dose rate used in this study). In between these dimensions, (i.e., ∼100 nm in Au), defect migration to the ligament surface happens faster than the time between cascades, ensuring radiation resistance for a given dose-rate. We conclude that foams can be tailored to become radiation tolerant.Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Monk, J. D.. Louisiana State University. Cain Department of Chemical Engineering; Estados UnidosFil: Caro, A.. Los Alamos National Laboratory; Estados UnidosFil: Misra, A.. Los Alamos National Laboratory; Estados UnidosFil: Zepada Ruiz, L.. Lawrence Livermore National Laboratory; Estados UnidosFil: Duchaineau, M.. Lawrence Livermore National Laboratory; Estados UnidosFil: Abraham, F.. Lawrence Livermore National Laboratory; Estados UnidosFil: Nastasi, M.. Los Alamos National Laboratory; Estados UnidosFil: Picraux, S.T.. Los Alamos National Laboratory; Estados UnidosFil: Wang, Y.Q.. Los Alamos National Laboratory; Estados UnidosFil: Farkas, D.. Virginia Tech. Department of Materials Sciences; Estados UnidosAmerican Chemical Society2011-06-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/20300Bringa, Eduardo Marcial; Monk, J. D.; Caro, A.; Misra, A.; Zepada Ruiz, L.; et al.; Are nanoporous materials radiation resistant?; American Chemical Society; Nano Letters; 12; 7; 9-6-2011; 3351-33551530-6984CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/nl201383uinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:42:53Zoai:ri.conicet.gov.ar:11336/20300instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:42:54.145CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Are nanoporous materials radiation resistant?
title Are nanoporous materials radiation resistant?
spellingShingle Are nanoporous materials radiation resistant?
Bringa, Eduardo Marcial
Radiation Damage
Nanofoams
Gold
Computer Simulations
title_short Are nanoporous materials radiation resistant?
title_full Are nanoporous materials radiation resistant?
title_fullStr Are nanoporous materials radiation resistant?
title_full_unstemmed Are nanoporous materials radiation resistant?
title_sort Are nanoporous materials radiation resistant?
dc.creator.none.fl_str_mv Bringa, Eduardo Marcial
Monk, J. D.
Caro, A.
Misra, A.
Zepada Ruiz, L.
Duchaineau, M.
Abraham, F.
Nastasi, M.
Picraux, S.T.
Wang, Y.Q.
Farkas, D.
author Bringa, Eduardo Marcial
author_facet Bringa, Eduardo Marcial
Monk, J. D.
Caro, A.
Misra, A.
Zepada Ruiz, L.
Duchaineau, M.
Abraham, F.
Nastasi, M.
Picraux, S.T.
Wang, Y.Q.
Farkas, D.
author_role author
author2 Monk, J. D.
Caro, A.
Misra, A.
Zepada Ruiz, L.
Duchaineau, M.
Abraham, F.
Nastasi, M.
Picraux, S.T.
Wang, Y.Q.
Farkas, D.
author2_role author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Radiation Damage
Nanofoams
Gold
Computer Simulations
topic Radiation Damage
Nanofoams
Gold
Computer Simulations
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The key to perfect radiation endurance is perfect recovery. Since surfaces are perfect sinks for defects, a porous material with a high surface to volume ratio has the potential to be extremely radiation tolerant, provided it is morphologically stable in a radiation environment. Experiments and computer simulations on nanoscale gold foams reported here show the existence of a window in the parameter space where foams are radiation tolerant. We analyze these results in terms of a model for the irradiation response that quantitatively locates such window that appears to be the consequence of the combined effect of two length scales dependent on the irradiation conditions: (i) foams with ligament diameters below a minimum value display ligament melting and breaking, together with compaction increasing with dose (this value is typically ∼5 nm for primary knock on atoms (PKA) of ∼15 keV in Au), while (ii) foams with ligament diameters above a maximum value show bulk behavior, that is, damage accumulation (few hundred nanometers for the PKA's energy and dose rate used in this study). In between these dimensions, (i.e., ∼100 nm in Au), defect migration to the ligament surface happens faster than the time between cascades, ensuring radiation resistance for a given dose-rate. We conclude that foams can be tailored to become radiation tolerant.
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Monk, J. D.. Louisiana State University. Cain Department of Chemical Engineering; Estados Unidos
Fil: Caro, A.. Los Alamos National Laboratory; Estados Unidos
Fil: Misra, A.. Los Alamos National Laboratory; Estados Unidos
Fil: Zepada Ruiz, L.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Duchaineau, M.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Abraham, F.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Nastasi, M.. Los Alamos National Laboratory; Estados Unidos
Fil: Picraux, S.T.. Los Alamos National Laboratory; Estados Unidos
Fil: Wang, Y.Q.. Los Alamos National Laboratory; Estados Unidos
Fil: Farkas, D.. Virginia Tech. Department of Materials Sciences; Estados Unidos
description The key to perfect radiation endurance is perfect recovery. Since surfaces are perfect sinks for defects, a porous material with a high surface to volume ratio has the potential to be extremely radiation tolerant, provided it is morphologically stable in a radiation environment. Experiments and computer simulations on nanoscale gold foams reported here show the existence of a window in the parameter space where foams are radiation tolerant. We analyze these results in terms of a model for the irradiation response that quantitatively locates such window that appears to be the consequence of the combined effect of two length scales dependent on the irradiation conditions: (i) foams with ligament diameters below a minimum value display ligament melting and breaking, together with compaction increasing with dose (this value is typically ∼5 nm for primary knock on atoms (PKA) of ∼15 keV in Au), while (ii) foams with ligament diameters above a maximum value show bulk behavior, that is, damage accumulation (few hundred nanometers for the PKA's energy and dose rate used in this study). In between these dimensions, (i.e., ∼100 nm in Au), defect migration to the ligament surface happens faster than the time between cascades, ensuring radiation resistance for a given dose-rate. We conclude that foams can be tailored to become radiation tolerant.
publishDate 2011
dc.date.none.fl_str_mv 2011-06-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/20300
Bringa, Eduardo Marcial; Monk, J. D.; Caro, A.; Misra, A.; Zepada Ruiz, L.; et al.; Are nanoporous materials radiation resistant?; American Chemical Society; Nano Letters; 12; 7; 9-6-2011; 3351-3355
1530-6984
CONICET Digital
CONICET
url http://hdl.handle.net/11336/20300
identifier_str_mv Bringa, Eduardo Marcial; Monk, J. D.; Caro, A.; Misra, A.; Zepada Ruiz, L.; et al.; Are nanoporous materials radiation resistant?; American Chemical Society; Nano Letters; 12; 7; 9-6-2011; 3351-3355
1530-6984
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1021/nl201383u
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614462820057088
score 13.070432