Are nanoporous materials radiation resistant?
- Autores
- Bringa, Eduardo Marcial; Monk, J. D.; Caro, A.; Misra, A.; Zepada Ruiz, L.; Duchaineau, M.; Abraham, F.; Nastasi, M.; Picraux, S.T.; Wang, Y.Q.; Farkas, D.
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The key to perfect radiation endurance is perfect recovery. Since surfaces are perfect sinks for defects, a porous material with a high surface to volume ratio has the potential to be extremely radiation tolerant, provided it is morphologically stable in a radiation environment. Experiments and computer simulations on nanoscale gold foams reported here show the existence of a window in the parameter space where foams are radiation tolerant. We analyze these results in terms of a model for the irradiation response that quantitatively locates such window that appears to be the consequence of the combined effect of two length scales dependent on the irradiation conditions: (i) foams with ligament diameters below a minimum value display ligament melting and breaking, together with compaction increasing with dose (this value is typically ∼5 nm for primary knock on atoms (PKA) of ∼15 keV in Au), while (ii) foams with ligament diameters above a maximum value show bulk behavior, that is, damage accumulation (few hundred nanometers for the PKA's energy and dose rate used in this study). In between these dimensions, (i.e., ∼100 nm in Au), defect migration to the ligament surface happens faster than the time between cascades, ensuring radiation resistance for a given dose-rate. We conclude that foams can be tailored to become radiation tolerant.
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Monk, J. D.. Louisiana State University. Cain Department of Chemical Engineering; Estados Unidos
Fil: Caro, A.. Los Alamos National Laboratory; Estados Unidos
Fil: Misra, A.. Los Alamos National Laboratory; Estados Unidos
Fil: Zepada Ruiz, L.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Duchaineau, M.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Abraham, F.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Nastasi, M.. Los Alamos National Laboratory; Estados Unidos
Fil: Picraux, S.T.. Los Alamos National Laboratory; Estados Unidos
Fil: Wang, Y.Q.. Los Alamos National Laboratory; Estados Unidos
Fil: Farkas, D.. Virginia Tech. Department of Materials Sciences; Estados Unidos - Materia
-
Radiation Damage
Nanofoams
Gold
Computer Simulations - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/20300
Ver los metadatos del registro completo
id |
CONICETDig_1d4ec984a9588b6c1fd88be50e0ee658 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/20300 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Are nanoporous materials radiation resistant?Bringa, Eduardo MarcialMonk, J. D.Caro, A.Misra, A.Zepada Ruiz, L.Duchaineau, M.Abraham, F.Nastasi, M.Picraux, S.T.Wang, Y.Q.Farkas, D.Radiation DamageNanofoamsGoldComputer Simulationshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The key to perfect radiation endurance is perfect recovery. Since surfaces are perfect sinks for defects, a porous material with a high surface to volume ratio has the potential to be extremely radiation tolerant, provided it is morphologically stable in a radiation environment. Experiments and computer simulations on nanoscale gold foams reported here show the existence of a window in the parameter space where foams are radiation tolerant. We analyze these results in terms of a model for the irradiation response that quantitatively locates such window that appears to be the consequence of the combined effect of two length scales dependent on the irradiation conditions: (i) foams with ligament diameters below a minimum value display ligament melting and breaking, together with compaction increasing with dose (this value is typically ∼5 nm for primary knock on atoms (PKA) of ∼15 keV in Au), while (ii) foams with ligament diameters above a maximum value show bulk behavior, that is, damage accumulation (few hundred nanometers for the PKA's energy and dose rate used in this study). In between these dimensions, (i.e., ∼100 nm in Au), defect migration to the ligament surface happens faster than the time between cascades, ensuring radiation resistance for a given dose-rate. We conclude that foams can be tailored to become radiation tolerant.Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Monk, J. D.. Louisiana State University. Cain Department of Chemical Engineering; Estados UnidosFil: Caro, A.. Los Alamos National Laboratory; Estados UnidosFil: Misra, A.. Los Alamos National Laboratory; Estados UnidosFil: Zepada Ruiz, L.. Lawrence Livermore National Laboratory; Estados UnidosFil: Duchaineau, M.. Lawrence Livermore National Laboratory; Estados UnidosFil: Abraham, F.. Lawrence Livermore National Laboratory; Estados UnidosFil: Nastasi, M.. Los Alamos National Laboratory; Estados UnidosFil: Picraux, S.T.. Los Alamos National Laboratory; Estados UnidosFil: Wang, Y.Q.. Los Alamos National Laboratory; Estados UnidosFil: Farkas, D.. Virginia Tech. Department of Materials Sciences; Estados UnidosAmerican Chemical Society2011-06-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/20300Bringa, Eduardo Marcial; Monk, J. D.; Caro, A.; Misra, A.; Zepada Ruiz, L.; et al.; Are nanoporous materials radiation resistant?; American Chemical Society; Nano Letters; 12; 7; 9-6-2011; 3351-33551530-6984CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/nl201383uinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:42:53Zoai:ri.conicet.gov.ar:11336/20300instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:42:54.145CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Are nanoporous materials radiation resistant? |
title |
Are nanoporous materials radiation resistant? |
spellingShingle |
Are nanoporous materials radiation resistant? Bringa, Eduardo Marcial Radiation Damage Nanofoams Gold Computer Simulations |
title_short |
Are nanoporous materials radiation resistant? |
title_full |
Are nanoporous materials radiation resistant? |
title_fullStr |
Are nanoporous materials radiation resistant? |
title_full_unstemmed |
Are nanoporous materials radiation resistant? |
title_sort |
Are nanoporous materials radiation resistant? |
dc.creator.none.fl_str_mv |
Bringa, Eduardo Marcial Monk, J. D. Caro, A. Misra, A. Zepada Ruiz, L. Duchaineau, M. Abraham, F. Nastasi, M. Picraux, S.T. Wang, Y.Q. Farkas, D. |
author |
Bringa, Eduardo Marcial |
author_facet |
Bringa, Eduardo Marcial Monk, J. D. Caro, A. Misra, A. Zepada Ruiz, L. Duchaineau, M. Abraham, F. Nastasi, M. Picraux, S.T. Wang, Y.Q. Farkas, D. |
author_role |
author |
author2 |
Monk, J. D. Caro, A. Misra, A. Zepada Ruiz, L. Duchaineau, M. Abraham, F. Nastasi, M. Picraux, S.T. Wang, Y.Q. Farkas, D. |
author2_role |
author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Radiation Damage Nanofoams Gold Computer Simulations |
topic |
Radiation Damage Nanofoams Gold Computer Simulations |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The key to perfect radiation endurance is perfect recovery. Since surfaces are perfect sinks for defects, a porous material with a high surface to volume ratio has the potential to be extremely radiation tolerant, provided it is morphologically stable in a radiation environment. Experiments and computer simulations on nanoscale gold foams reported here show the existence of a window in the parameter space where foams are radiation tolerant. We analyze these results in terms of a model for the irradiation response that quantitatively locates such window that appears to be the consequence of the combined effect of two length scales dependent on the irradiation conditions: (i) foams with ligament diameters below a minimum value display ligament melting and breaking, together with compaction increasing with dose (this value is typically ∼5 nm for primary knock on atoms (PKA) of ∼15 keV in Au), while (ii) foams with ligament diameters above a maximum value show bulk behavior, that is, damage accumulation (few hundred nanometers for the PKA's energy and dose rate used in this study). In between these dimensions, (i.e., ∼100 nm in Au), defect migration to the ligament surface happens faster than the time between cascades, ensuring radiation resistance for a given dose-rate. We conclude that foams can be tailored to become radiation tolerant. Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina Fil: Monk, J. D.. Louisiana State University. Cain Department of Chemical Engineering; Estados Unidos Fil: Caro, A.. Los Alamos National Laboratory; Estados Unidos Fil: Misra, A.. Los Alamos National Laboratory; Estados Unidos Fil: Zepada Ruiz, L.. Lawrence Livermore National Laboratory; Estados Unidos Fil: Duchaineau, M.. Lawrence Livermore National Laboratory; Estados Unidos Fil: Abraham, F.. Lawrence Livermore National Laboratory; Estados Unidos Fil: Nastasi, M.. Los Alamos National Laboratory; Estados Unidos Fil: Picraux, S.T.. Los Alamos National Laboratory; Estados Unidos Fil: Wang, Y.Q.. Los Alamos National Laboratory; Estados Unidos Fil: Farkas, D.. Virginia Tech. Department of Materials Sciences; Estados Unidos |
description |
The key to perfect radiation endurance is perfect recovery. Since surfaces are perfect sinks for defects, a porous material with a high surface to volume ratio has the potential to be extremely radiation tolerant, provided it is morphologically stable in a radiation environment. Experiments and computer simulations on nanoscale gold foams reported here show the existence of a window in the parameter space where foams are radiation tolerant. We analyze these results in terms of a model for the irradiation response that quantitatively locates such window that appears to be the consequence of the combined effect of two length scales dependent on the irradiation conditions: (i) foams with ligament diameters below a minimum value display ligament melting and breaking, together with compaction increasing with dose (this value is typically ∼5 nm for primary knock on atoms (PKA) of ∼15 keV in Au), while (ii) foams with ligament diameters above a maximum value show bulk behavior, that is, damage accumulation (few hundred nanometers for the PKA's energy and dose rate used in this study). In between these dimensions, (i.e., ∼100 nm in Au), defect migration to the ligament surface happens faster than the time between cascades, ensuring radiation resistance for a given dose-rate. We conclude that foams can be tailored to become radiation tolerant. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-06-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/20300 Bringa, Eduardo Marcial; Monk, J. D.; Caro, A.; Misra, A.; Zepada Ruiz, L.; et al.; Are nanoporous materials radiation resistant?; American Chemical Society; Nano Letters; 12; 7; 9-6-2011; 3351-3355 1530-6984 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/20300 |
identifier_str_mv |
Bringa, Eduardo Marcial; Monk, J. D.; Caro, A.; Misra, A.; Zepada Ruiz, L.; et al.; Are nanoporous materials radiation resistant?; American Chemical Society; Nano Letters; 12; 7; 9-6-2011; 3351-3355 1530-6984 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1021/nl201383u |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614462820057088 |
score |
13.070432 |