Quantification of the strength of inertial waves in a rotating turbulent flow

Autores
Clark Di Leoni, Patricio; Cobelli, Pablo Javier; Mininni, Pablo Daniel; Dmitruk, Pablo Ariel; Matthaeus, William
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We quantify the strength of the waves and their impact on the energy cascade in rotating turbulence by studying the wave number and frequency energy spectrum, and the time correlation functions of individual Fourier modes in numerical simulations in three dimensions in periodic boxes. From the spectrum, we find that a significant fraction of the energy is concentrated in modes with wave frequency ω ≈ 0, even when the external forcing injects no energy directly into these modes. However, for modes for which the period of the inertial waves τω is faster than the turnover time τNL, a significant fraction of the remaining energy is concentrated in the modes that satisfy the dispersion relation of the waves. No evidence of accumulation of energy in the modes with τω = τNL is observed, unlike what critical balance arguments predict. From the time correlation functions, we find that for modes with τω < τsw (with tsw the sweeping time) the dominant decorrelation time is the wave period, and that these modes also show a slower modulation on the timescale tNL as assumed in wave turbulence theories. The rest of the modes are decorrelated with the sweeping time, including the very energetic modes with ω ≈ 0. © 2014 AIP Publishing LLC.
Fil: Clark Di Leoni, Patricio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Cobelli, Pablo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Dmitruk, Pablo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Matthaeus, William. Bartol Research Institute; Estados Unidos
Materia
TURBULENCE
ROTATING FLOWS
SWIRLING FLOWS
DIRECT NUMERICAL SIMULATIONS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/77184

id CONICETDig_0696fb8718720404224ea9572ab859a1
oai_identifier_str oai:ri.conicet.gov.ar:11336/77184
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Quantification of the strength of inertial waves in a rotating turbulent flowClark Di Leoni, PatricioCobelli, Pablo JavierMininni, Pablo DanielDmitruk, Pablo ArielMatthaeus, WilliamTURBULENCEROTATING FLOWSSWIRLING FLOWSDIRECT NUMERICAL SIMULATIONShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We quantify the strength of the waves and their impact on the energy cascade in rotating turbulence by studying the wave number and frequency energy spectrum, and the time correlation functions of individual Fourier modes in numerical simulations in three dimensions in periodic boxes. From the spectrum, we find that a significant fraction of the energy is concentrated in modes with wave frequency ω ≈ 0, even when the external forcing injects no energy directly into these modes. However, for modes for which the period of the inertial waves τω is faster than the turnover time τNL, a significant fraction of the remaining energy is concentrated in the modes that satisfy the dispersion relation of the waves. No evidence of accumulation of energy in the modes with τω = τNL is observed, unlike what critical balance arguments predict. From the time correlation functions, we find that for modes with τω < τsw (with tsw the sweeping time) the dominant decorrelation time is the wave period, and that these modes also show a slower modulation on the timescale tNL as assumed in wave turbulence theories. The rest of the modes are decorrelated with the sweeping time, including the very energetic modes with ω ≈ 0. © 2014 AIP Publishing LLC.Fil: Clark Di Leoni, Patricio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Cobelli, Pablo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Dmitruk, Pablo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Matthaeus, William. Bartol Research Institute; Estados UnidosAmerican Institute of Physics2014-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/77184Clark Di Leoni, Patricio; Cobelli, Pablo Javier; Mininni, Pablo Daniel; Dmitruk, Pablo Ariel; Matthaeus, William; Quantification of the strength of inertial waves in a rotating turbulent flow; American Institute of Physics; Physics of Fluids; 26; 3; 3-2014; 3510601-35106151070-6631CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://scitation.aip.org/content/aip/journal/pof2/26/3/10.1063/1.4868280?ver=pdfcovinfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.4868280info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:01:12Zoai:ri.conicet.gov.ar:11336/77184instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:01:13.023CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Quantification of the strength of inertial waves in a rotating turbulent flow
title Quantification of the strength of inertial waves in a rotating turbulent flow
spellingShingle Quantification of the strength of inertial waves in a rotating turbulent flow
Clark Di Leoni, Patricio
TURBULENCE
ROTATING FLOWS
SWIRLING FLOWS
DIRECT NUMERICAL SIMULATIONS
title_short Quantification of the strength of inertial waves in a rotating turbulent flow
title_full Quantification of the strength of inertial waves in a rotating turbulent flow
title_fullStr Quantification of the strength of inertial waves in a rotating turbulent flow
title_full_unstemmed Quantification of the strength of inertial waves in a rotating turbulent flow
title_sort Quantification of the strength of inertial waves in a rotating turbulent flow
dc.creator.none.fl_str_mv Clark Di Leoni, Patricio
Cobelli, Pablo Javier
Mininni, Pablo Daniel
Dmitruk, Pablo Ariel
Matthaeus, William
author Clark Di Leoni, Patricio
author_facet Clark Di Leoni, Patricio
Cobelli, Pablo Javier
Mininni, Pablo Daniel
Dmitruk, Pablo Ariel
Matthaeus, William
author_role author
author2 Cobelli, Pablo Javier
Mininni, Pablo Daniel
Dmitruk, Pablo Ariel
Matthaeus, William
author2_role author
author
author
author
dc.subject.none.fl_str_mv TURBULENCE
ROTATING FLOWS
SWIRLING FLOWS
DIRECT NUMERICAL SIMULATIONS
topic TURBULENCE
ROTATING FLOWS
SWIRLING FLOWS
DIRECT NUMERICAL SIMULATIONS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We quantify the strength of the waves and their impact on the energy cascade in rotating turbulence by studying the wave number and frequency energy spectrum, and the time correlation functions of individual Fourier modes in numerical simulations in three dimensions in periodic boxes. From the spectrum, we find that a significant fraction of the energy is concentrated in modes with wave frequency ω ≈ 0, even when the external forcing injects no energy directly into these modes. However, for modes for which the period of the inertial waves τω is faster than the turnover time τNL, a significant fraction of the remaining energy is concentrated in the modes that satisfy the dispersion relation of the waves. No evidence of accumulation of energy in the modes with τω = τNL is observed, unlike what critical balance arguments predict. From the time correlation functions, we find that for modes with τω < τsw (with tsw the sweeping time) the dominant decorrelation time is the wave period, and that these modes also show a slower modulation on the timescale tNL as assumed in wave turbulence theories. The rest of the modes are decorrelated with the sweeping time, including the very energetic modes with ω ≈ 0. © 2014 AIP Publishing LLC.
Fil: Clark Di Leoni, Patricio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Cobelli, Pablo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Dmitruk, Pablo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Matthaeus, William. Bartol Research Institute; Estados Unidos
description We quantify the strength of the waves and their impact on the energy cascade in rotating turbulence by studying the wave number and frequency energy spectrum, and the time correlation functions of individual Fourier modes in numerical simulations in three dimensions in periodic boxes. From the spectrum, we find that a significant fraction of the energy is concentrated in modes with wave frequency ω ≈ 0, even when the external forcing injects no energy directly into these modes. However, for modes for which the period of the inertial waves τω is faster than the turnover time τNL, a significant fraction of the remaining energy is concentrated in the modes that satisfy the dispersion relation of the waves. No evidence of accumulation of energy in the modes with τω = τNL is observed, unlike what critical balance arguments predict. From the time correlation functions, we find that for modes with τω < τsw (with tsw the sweeping time) the dominant decorrelation time is the wave period, and that these modes also show a slower modulation on the timescale tNL as assumed in wave turbulence theories. The rest of the modes are decorrelated with the sweeping time, including the very energetic modes with ω ≈ 0. © 2014 AIP Publishing LLC.
publishDate 2014
dc.date.none.fl_str_mv 2014-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/77184
Clark Di Leoni, Patricio; Cobelli, Pablo Javier; Mininni, Pablo Daniel; Dmitruk, Pablo Ariel; Matthaeus, William; Quantification of the strength of inertial waves in a rotating turbulent flow; American Institute of Physics; Physics of Fluids; 26; 3; 3-2014; 3510601-3510615
1070-6631
CONICET Digital
CONICET
url http://hdl.handle.net/11336/77184
identifier_str_mv Clark Di Leoni, Patricio; Cobelli, Pablo Javier; Mininni, Pablo Daniel; Dmitruk, Pablo Ariel; Matthaeus, William; Quantification of the strength of inertial waves in a rotating turbulent flow; American Institute of Physics; Physics of Fluids; 26; 3; 3-2014; 3510601-3510615
1070-6631
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://scitation.aip.org/content/aip/journal/pof2/26/3/10.1063/1.4868280?ver=pdfcov
info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4868280
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269683306201088
score 13.13397