Robust consistent estimators for ROC curves with covariates
- Autores
- Bianco, Ana Maria; Boente Boente, Graciela Lina; González Manteiga, Wenceslao
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The Receiver Operating Characteristic (ROC) curve is a use-ful tool to measure the classification capability of a continuous variable to assess the accuracy of a medical test that distinguishes between two conditions. Sometimes, covariates related to the diagnostic variable may increase the discriminating power of the ROC curve. Due to the lack of stability of classical ROC curves estimators to outliers, we introduce a procedure to obtain robust estimators in presence of covariates. The considered proposal focusses on a semiparametric approach which robustly fits a location-scale regression model to the diagnostic variable and considers robust adaptive empirical estimators of the regression residuals. The uniform consistency of the proposal is derived under mild assumptions. A Monte Carlo study is carried out to compare the performance of the robust proposed estimators with the classical ones both, in clean and contaminated samples. A real data set is also analysed.
Fil: Bianco, Ana Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina
Fil: Boente Boente, Graciela Lina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: González Manteiga, Wenceslao. Universidad de Santiago de Compostela; España - Materia
-
COVARIATES
PARAMETRIC REGRESSION
ROBUSTNESS
ROC CURVES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/202449
Ver los metadatos del registro completo
id |
CONICETDig_1d1ad9a125425a906fe2a93408239ff5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/202449 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Robust consistent estimators for ROC curves with covariatesBianco, Ana MariaBoente Boente, Graciela LinaGonzález Manteiga, WenceslaoCOVARIATESPARAMETRIC REGRESSIONROBUSTNESSROC CURVEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The Receiver Operating Characteristic (ROC) curve is a use-ful tool to measure the classification capability of a continuous variable to assess the accuracy of a medical test that distinguishes between two conditions. Sometimes, covariates related to the diagnostic variable may increase the discriminating power of the ROC curve. Due to the lack of stability of classical ROC curves estimators to outliers, we introduce a procedure to obtain robust estimators in presence of covariates. The considered proposal focusses on a semiparametric approach which robustly fits a location-scale regression model to the diagnostic variable and considers robust adaptive empirical estimators of the regression residuals. The uniform consistency of the proposal is derived under mild assumptions. A Monte Carlo study is carried out to compare the performance of the robust proposed estimators with the classical ones both, in clean and contaminated samples. A real data set is also analysed.Fil: Bianco, Ana Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; ArgentinaFil: Boente Boente, Graciela Lina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: González Manteiga, Wenceslao. Universidad de Santiago de Compostela; EspañaInstitute of Mathematical Statistics2022-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/202449Bianco, Ana Maria; Boente Boente, Graciela Lina; González Manteiga, Wenceslao; Robust consistent estimators for ROC curves with covariates; Institute of Mathematical Statistics; Electronic Journal of Statistics; 16; 2; 7-2022; 4133-41611935-7524CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-16/issue-2/Robust-consistent-estimators-for-ROC-curves-with-covariates/10.1214/22-EJS2042.fullinfo:eu-repo/semantics/altIdentifier/doi/10.1214/22-EJS2042info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:17:57Zoai:ri.conicet.gov.ar:11336/202449instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:17:57.303CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Robust consistent estimators for ROC curves with covariates |
title |
Robust consistent estimators for ROC curves with covariates |
spellingShingle |
Robust consistent estimators for ROC curves with covariates Bianco, Ana Maria COVARIATES PARAMETRIC REGRESSION ROBUSTNESS ROC CURVES |
title_short |
Robust consistent estimators for ROC curves with covariates |
title_full |
Robust consistent estimators for ROC curves with covariates |
title_fullStr |
Robust consistent estimators for ROC curves with covariates |
title_full_unstemmed |
Robust consistent estimators for ROC curves with covariates |
title_sort |
Robust consistent estimators for ROC curves with covariates |
dc.creator.none.fl_str_mv |
Bianco, Ana Maria Boente Boente, Graciela Lina González Manteiga, Wenceslao |
author |
Bianco, Ana Maria |
author_facet |
Bianco, Ana Maria Boente Boente, Graciela Lina González Manteiga, Wenceslao |
author_role |
author |
author2 |
Boente Boente, Graciela Lina González Manteiga, Wenceslao |
author2_role |
author author |
dc.subject.none.fl_str_mv |
COVARIATES PARAMETRIC REGRESSION ROBUSTNESS ROC CURVES |
topic |
COVARIATES PARAMETRIC REGRESSION ROBUSTNESS ROC CURVES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The Receiver Operating Characteristic (ROC) curve is a use-ful tool to measure the classification capability of a continuous variable to assess the accuracy of a medical test that distinguishes between two conditions. Sometimes, covariates related to the diagnostic variable may increase the discriminating power of the ROC curve. Due to the lack of stability of classical ROC curves estimators to outliers, we introduce a procedure to obtain robust estimators in presence of covariates. The considered proposal focusses on a semiparametric approach which robustly fits a location-scale regression model to the diagnostic variable and considers robust adaptive empirical estimators of the regression residuals. The uniform consistency of the proposal is derived under mild assumptions. A Monte Carlo study is carried out to compare the performance of the robust proposed estimators with the classical ones both, in clean and contaminated samples. A real data set is also analysed. Fil: Bianco, Ana Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina Fil: Boente Boente, Graciela Lina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: González Manteiga, Wenceslao. Universidad de Santiago de Compostela; España |
description |
The Receiver Operating Characteristic (ROC) curve is a use-ful tool to measure the classification capability of a continuous variable to assess the accuracy of a medical test that distinguishes between two conditions. Sometimes, covariates related to the diagnostic variable may increase the discriminating power of the ROC curve. Due to the lack of stability of classical ROC curves estimators to outliers, we introduce a procedure to obtain robust estimators in presence of covariates. The considered proposal focusses on a semiparametric approach which robustly fits a location-scale regression model to the diagnostic variable and considers robust adaptive empirical estimators of the regression residuals. The uniform consistency of the proposal is derived under mild assumptions. A Monte Carlo study is carried out to compare the performance of the robust proposed estimators with the classical ones both, in clean and contaminated samples. A real data set is also analysed. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/202449 Bianco, Ana Maria; Boente Boente, Graciela Lina; González Manteiga, Wenceslao; Robust consistent estimators for ROC curves with covariates; Institute of Mathematical Statistics; Electronic Journal of Statistics; 16; 2; 7-2022; 4133-4161 1935-7524 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/202449 |
identifier_str_mv |
Bianco, Ana Maria; Boente Boente, Graciela Lina; González Manteiga, Wenceslao; Robust consistent estimators for ROC curves with covariates; Institute of Mathematical Statistics; Electronic Journal of Statistics; 16; 2; 7-2022; 4133-4161 1935-7524 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-16/issue-2/Robust-consistent-estimators-for-ROC-curves-with-covariates/10.1214/22-EJS2042.full info:eu-repo/semantics/altIdentifier/doi/10.1214/22-EJS2042 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Mathematical Statistics |
publisher.none.fl_str_mv |
Institute of Mathematical Statistics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614137082019840 |
score |
13.070432 |